123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328 |
- #include "min_quad_with_fixed.h"
- #include "slice.h"
- #include "is_symmetric.h"
- #include "find.h"
- #include "sparse.h"
- #include "repmat.h"
- #include "lu_lagrange.h"
- #include "full.h"
- #include "matlab_format.h"
- #include "EPS.h"
- #include "cat.h"
- //#include <Eigen/SparseExtra>
- // Bug in unsupported/Eigen/SparseExtra needs iostream first
- #include <iostream>
- #include <unsupported/Eigen/SparseExtra>
- #include <cassert>
- #include <cstdio>
- #include <iostream>
- template <typename T, typename Derivedknown>
- IGL_INLINE bool igl::min_quad_with_fixed_precompute(
- const Eigen::SparseMatrix<T>& A,
- const Eigen::PlainObjectBase<Derivedknown> & known,
- const Eigen::SparseMatrix<T>& Aeq,
- const bool pd,
- min_quad_with_fixed_data<T> & data
- )
- {
- using namespace Eigen;
- using namespace std;
- using namespace igl;
- // number of rows
- int n = A.rows();
- // cache problem size
- data.n = n;
- int neq = Aeq.rows();
- // default is to have 0 linear equality constraints
- if(Aeq.size() != 0)
- {
- assert(n == Aeq.cols());
- }
- assert(A.rows() == n);
- assert(A.cols() == n);
- // number of known rows
- int kr = known.size();
- assert(kr == 0 || known.minCoeff() >= 0);
- assert(kr == 0 || known.maxCoeff() < n);
- assert(neq <= n);
- // cache known
- data.known = known;
- // get list of unknown indices
- data.unknown.resize(n-kr);
- std::vector<bool> unknown_mask;
- unknown_mask.resize(n,true);
- for(int i = 0;i<kr;i++)
- {
- unknown_mask[known(i)] = false;
- }
- int u = 0;
- for(int i = 0;i<n;i++)
- {
- if(unknown_mask[i])
- {
- data.unknown(u) = i;
- u++;
- }
- }
- // get list of lagrange multiplier indices
- data.lagrange.resize(neq);
- for(int i = 0;i<neq;i++)
- {
- data.lagrange(i) = n + i;
- }
- // cache unknown followed by lagrange indices
- data.unknown_lagrange.resize(data.unknown.size()+data.lagrange.size());
- data.unknown_lagrange << data.unknown, data.lagrange;
- SparseMatrix<T> Auu;
- igl::slice(A,data.unknown,data.unknown,Auu);
- // Positive definiteness is *not* determined, rather it is given as a
- // parameter
- data.Auu_pd = pd;
- if(data.Auu_pd)
- {
- // PD implies symmetric
- data.Auu_sym = true;
- assert(igl::is_symmetric(Auu,igl::EPS<double>()));
- }else
- {
- // determine if A(unknown,unknown) is symmetric and/or positive definite
- data.Auu_sym = igl::is_symmetric(Auu,igl::EPS<double>());
- }
- // Append lagrange multiplier quadratic terms
- SparseMatrix<T> new_A;
- SparseMatrix<T> AeqT = Aeq.transpose();
- SparseMatrix<T> Z(neq,neq);
- // This is a bit slower. But why isn't cat fast?
- new_A =
- cat(1,
- cat(2, A, AeqT ),
- cat(2, Aeq, Z ));
- //cout<<matlab_format(new_A,"new_A")<<endl;
- //Matrix<int,Dynamic,1> AI;
- //Matrix<int,Dynamic,1> AJ;
- //Matrix<T,Dynamic,1> AV;
- //// Slow
- //igl::find(A,AI,AJ,AV);
- //Matrix<int,Dynamic,1> AeqI(0,1);
- //Matrix<int,Dynamic,1> AeqJ(0,1);
- //Matrix<T,Dynamic,1> AeqV(0,1);
- //if(neq > 0)
- //{
- // // Slow
- // igl::find(Aeq,AeqI,AeqJ,AeqV);
- //}
- //Matrix<int,Dynamic,1> new_AI(AV.size()+AeqV.size()*2);
- //Matrix<int,Dynamic,1> new_AJ(AV.size()+AeqV.size()*2);
- //Matrix<T,Dynamic,1> new_AV(AV.size()+AeqV.size()*2);
- //new_AI << AI, (AeqI.array()+n).matrix(), AeqJ;
- //new_AJ << AJ, AeqJ, (AeqI.array()+n).matrix();
- //new_AV << AV, AeqV, AeqV;
- //// Slow
- //igl::sparse(new_AI,new_AJ,new_AV,n+neq,n+neq,new_A);
- //cout<<matlab_format(new_A,"new_A")<<endl;
- // precompute RHS builders
- if(kr > 0)
- {
- SparseMatrix<T> Aulk,Akul;
- // Slow
- igl::slice(new_A,data.unknown_lagrange,data.known,Aulk);
- //// This doesn't work!!!
- //data.preY = Aulk + Akul.transpose();
- // Slow
- if(data.Auu_sym)
- {
- data.preY = Aulk*2;
- }else
- {
- igl::slice(new_A,data.known,data.unknown_lagrange,Akul);
- SparseMatrix<T> AkulT = Akul.transpose();
- data.preY = Aulk + AkulT;
- }
- }else
- {
- data.preY.resize(data.unknown_lagrange.size(),0);
- }
- // Positive definite and no equality constraints (Postive definiteness
- // implies symmetric)
- if(data.Auu_pd && neq == 0)
- {
- data.llt.compute(Auu);
- switch(data.llt.info())
- {
- case Eigen::Success:
- break;
- case Eigen::NumericalIssue:
- cerr<<"Error: Numerical issue."<<endl;
- return false;
- default:
- cerr<<"Error: Other."<<endl;
- return false;
- }
- data.solver_type = igl::min_quad_with_fixed_data<T>::LLT;
- }else
- {
- // Either not PD or there are equality constraints
- SparseMatrix<T> NA;
- igl::slice(new_A,data.unknown_lagrange,data.unknown_lagrange,NA);
- data.NA = NA;
- // Ideally we'd use LDLT but Eigen doesn't support positive semi-definite
- // matrices:
- // http://forum.kde.org/viewtopic.php?f=74&t=106962&p=291990#p291990
- if(data.Auu_sym && false)
- {
- data.ldlt.compute(NA);
- switch(data.ldlt.info())
- {
- case Eigen::Success:
- break;
- case Eigen::NumericalIssue:
- cerr<<"Error: Numerical issue."<<endl;
- return false;
- default:
- cerr<<"Error: Other."<<endl;
- return false;
- }
- data.solver_type = igl::min_quad_with_fixed_data<T>::LDLT;
- }else
- {
- // Resort to LU
- // Bottleneck >1/2
- data.lu.compute(NA);
- MatrixXd NAf;
- full(NA,NAf);
- //std::cout<<"NA=["<<std::endl<<NA<<std::endl<<"];"<<std::endl;
- switch(data.lu.info())
- {
- case Eigen::Success:
- break;
- case Eigen::NumericalIssue:
- cerr<<"Error: Numerical issue."<<endl;
- return false;
- case Eigen::InvalidInput:
- cerr<<"Error: Invalid Input."<<endl;
- return false;
- default:
- cerr<<"Error: Other."<<endl;
- return false;
- }
- data.solver_type = igl::min_quad_with_fixed_data<T>::LU;
- }
- }
- return true;
- }
- template <
- typename T,
- typename DerivedB,
- typename DerivedY,
- typename DerivedBeq,
- typename DerivedZ>
- IGL_INLINE bool igl::min_quad_with_fixed_solve(
- const min_quad_with_fixed_data<T> & data,
- const Eigen::PlainObjectBase<DerivedB> & B,
- const Eigen::PlainObjectBase<DerivedY> & Y,
- const Eigen::PlainObjectBase<DerivedBeq> & Beq,
- Eigen::PlainObjectBase<DerivedZ> & Z)
- {
- using namespace std;
- // number of known rows
- int kr = data.known.size();
- if(kr!=0)
- {
- assert(kr == Y.rows());
- }
- // number of columns to solve
- int cols = Y.cols();
- assert(B.cols() == 1);
- assert(Beq.size() == 0 || Beq.cols() == 1);
- // number of lagrange multipliers aka linear equality constraints
- int neq = data.lagrange.size();
- // append lagrange multiplier rhs's
- Eigen::Matrix<T,Eigen::Dynamic,1> BBeq(B.size() + Beq.size());
- BBeq << B, (Beq*-2.0);
- // Build right hand side
- Eigen::Matrix<T,Eigen::Dynamic,1> BBequl;
- igl::slice(BBeq,data.unknown_lagrange,BBequl);
- Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> BBequlcols;
- igl::repmat(BBequl,1,cols,BBequlcols);
- Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> NB;
- if(kr == 0)
- {
- NB = BBequlcols;
- }else
- {
- NB = data.preY * Y + BBequlcols;
- }
- // resize output
- Z.resize(data.n,cols);
- // Set known values
- for(int i = 0;i < kr;i++)
- {
- for(int j = 0;j < cols;j++)
- {
- Z(data.known(i),j) = Y(i,j);
- }
- }
- //std::cout<<"NB=["<<std::endl<<NB<<std::endl<<"];"<<std::endl;
- Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> sol;
- //cout<<matlab_format(NB,"NB")<<endl;
- switch(data.solver_type)
- {
- case igl::min_quad_with_fixed_data<T>::LLT:
- sol = data.llt.solve(NB);
- break;
- case igl::min_quad_with_fixed_data<T>::LDLT:
- sol = data.ldlt.solve(NB);
- break;
- case igl::min_quad_with_fixed_data<T>::LU:
- // Not a bottleneck
- sol = data.lu.solve(NB);
- break;
- default:
- cerr<<"Error: invalid solver type"<<endl;
- return false;
- }
- //std::cout<<"sol=["<<std::endl<<sol<<std::endl<<"];"<<std::endl;
- // Now sol contains sol/-0.5
- sol *= -0.5;
- // Now sol contains solution
- // Place solution in Z
- for(int i = 0;i<(sol.rows()-neq);i++)
- {
- for(int j = 0;j<sol.cols();j++)
- {
- Z(data.unknown_lagrange(i),j) = sol(i,j);
- }
- }
- return true;
- }
- #ifndef IGL_HEADER_ONLY
- // Explicit template specialization
- template bool igl::min_quad_with_fixed_solve<double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(igl::min_quad_with_fixed_data<double> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
- template bool igl::min_quad_with_fixed_precompute<double, Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int> const&, bool, igl::min_quad_with_fixed_data<double>&);
- #endif
|