12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199 |
- #include "outer_hull.h"
- #include "outer_facet.h"
- #include "sortrows.h"
- #include "facet_components.h"
- #include "winding_number.h"
- #include "triangle_triangle_adjacency.h"
- #include "unique_edge_map.h"
- #include "barycenter.h"
- #include "per_face_normals.h"
- #include "writePLY.h"
- #include "sort_angles.h"
- #include <Eigen/Geometry>
- #include <vector>
- #include <map>
- #include <queue>
- #include <iostream>
- #include <CGAL/number_utils.h>
- //#define IGL_OUTER_HULL_DEBUG
- template <
- typename DerivedV,
- typename DerivedF,
- typename DerivedN,
- typename DerivedG,
- typename DerivedJ,
- typename Derivedflip>
- IGL_INLINE void igl::outer_hull(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::PlainObjectBase<DerivedF> & F,
- const Eigen::PlainObjectBase<DerivedN> & N,
- Eigen::PlainObjectBase<DerivedG> & G,
- Eigen::PlainObjectBase<DerivedJ> & J,
- Eigen::PlainObjectBase<Derivedflip> & flip)
- {
- std::cout.precision(20);
- //for (size_t i=0; i<V.rows(); i++) {
- // std::cout << "v " << V.row(i) << std::endl;
- //}
- #ifdef IGL_OUTER_HULL_DEBUG
- std::cerr << "Extracting outer hull" << std::endl;
- writePLY("outer_hull_input.ply", V, F);
- #endif
- using namespace Eigen;
- using namespace std;
- typedef typename DerivedF::Index Index;
- Matrix<Index,DerivedF::RowsAtCompileTime,1> C;
- typedef Matrix<typename DerivedV::Scalar,Dynamic,DerivedV::ColsAtCompileTime> MatrixXV;
- typedef Matrix<typename DerivedF::Scalar,Dynamic,DerivedF::ColsAtCompileTime> MatrixXF;
- typedef Matrix<typename DerivedG::Scalar,Dynamic,DerivedG::ColsAtCompileTime> MatrixXG;
- typedef Matrix<typename DerivedJ::Scalar,Dynamic,DerivedJ::ColsAtCompileTime> MatrixXJ;
- typedef Matrix<typename DerivedN::Scalar,1,3> RowVector3N;
- const Index m = F.rows();
- const auto & duplicate_simplex = [&F](const int f, const int g)->bool
- {
- return
- (F(f,0) == F(g,0) && F(f,1) == F(g,1) && F(f,2) == F(g,2)) ||
- (F(f,1) == F(g,0) && F(f,2) == F(g,1) && F(f,0) == F(g,2)) ||
- (F(f,2) == F(g,0) && F(f,0) == F(g,1) && F(f,1) == F(g,2)) ||
- (F(f,0) == F(g,2) && F(f,1) == F(g,1) && F(f,2) == F(g,0)) ||
- (F(f,1) == F(g,2) && F(f,2) == F(g,1) && F(f,0) == F(g,0)) ||
- (F(f,2) == F(g,2) && F(f,0) == F(g,1) && F(f,1) == F(g,0));
- };
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"outer hull..."<<endl;
- #endif
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"edge map..."<<endl;
- #endif
- typedef Matrix<typename DerivedF::Scalar,Dynamic,2> MatrixX2I;
- typedef Matrix<typename DerivedF::Index,Dynamic,1> VectorXI;
- typedef Matrix<typename DerivedV::Scalar, 3, 1> Vector3F;
- MatrixX2I E,uE;
- VectorXI EMAP;
- vector<vector<typename DerivedF::Index> > uE2E;
- unique_edge_map(F,E,uE,EMAP,uE2E);
- #ifdef IGL_OUTER_HULL_DEBUG
- for (size_t ui=0; ui<uE.rows(); ui++) {
- std::cout << ui << ": " << uE2E[ui].size() << " -- (";
- for (size_t i=0; i<uE2E[ui].size(); i++) {
- std::cout << uE2E[ui][i] << ", ";
- }
- std::cout << ")" << std::endl;
- }
- #endif
- // TODO:
- // uE --> face-edge index, sorted CCW around edge according to normal
- // uE --> sorted order index
- // uE --> bool, whether needed to flip face to make "consistent" with unique
- // edge
- // Place order of each half-edge in its corresponding sorted list around edge
- VectorXI diIM(3*m);
- // Whether face's edge used for sorting is consistent with unique edge
- VectorXI dicons(3*m);
- // dihedral angles of faces around edge with face of edge in dicons
- vector<vector<typename Eigen::Vector2d> > di(uE2E.size());
- // For each list of face-edges incide on a unique edge
- for(size_t ui = 0;ui<(size_t)uE.rows();ui++)
- {
- // Base normal vector to orient against
- const auto fe0 = uE2E[ui][0];
- const RowVector3N & eVp = N.row(fe0%m);
- MatrixXd di_I(uE2E[ui].size(),3);
- const typename DerivedF::Scalar o = F(fe0%m, fe0/m);
- const typename DerivedF::Scalar d = F(fe0%m,((fe0/m)+2)%3);
- const typename DerivedF::Scalar s = F(fe0%m,((fe0/m)+1)%3);
- // Edge vector
- auto eV = (V.row(d)-V.row(s)).normalized();
- auto edge_len = (V.row(d) - V.row(s)).norm();
- auto edge_valance = uE2E[ui].size();
- auto eO = V.row(o) - V.row(s);
- assert(edge_valance % 2 == 0);
- const typename DerivedV::Scalar EPS = 1e-12;
- bool degenerated = !eV.allFinite() || edge_len < EPS;
- bool all_faces_are_degenerated_and_coplanar = false;
- #ifdef IGL_OUTER_HULL_DEBUG
- if (degenerated && edge_valance > 2) {
- cerr.precision(30);
- std::cerr << ui << ": " << (V.row(d) - V.row(s)).norm() << std::endl;
- std::cerr << "Edge valance: " << edge_valance << std::endl;
- std::cerr << V.row(d) << std::endl;
- std::cerr << V.row(s) << std::endl;
- }
- #endif
- if (degenerated) {
- const size_t num_adj_faces = uE2E[ui].size();
- Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 3>
- normals(num_adj_faces, 3);
- for (size_t fei=0; fei<num_adj_faces; fei++) {
- const auto & fe = uE2E[ui][fei];
- const auto f = fe % m;
- const RowVector3N & n = N.row(f);
- normals.row(fei) = n;
- }
- for (size_t i=0; i<num_adj_faces; i++) {
- size_t j = (i+1) % num_adj_faces;
- eV = normals.row(i).cross(normals.row(j));
- auto length = eV.norm();
- if (length > 0) {
- eV /= length;
- break;
- }
- }
- }
- if (!eV.allFinite() || eV.norm() < EPS) {
- //cerr << "This is bad... all adj face normals are colinear" << std::endl;
- eV.setZero();
- all_faces_are_degenerated_and_coplanar = true;
- }
- if (degenerated){
- // Adjust edge direction.
- Vector3F in_face_vec = V.row(o) - V.row(s);
- Vector3F edge = eV;
- if (edge.cross(in_face_vec).dot(eVp) < 0) {
- #ifdef IGL_OUTER_HULL_DEBUG
- cerr << "Flipping edge..." << std::endl;
- #endif
- eV *= -1;
- }
- //cerr << "Resolved: " << eV << std::endl;
- }
- #ifdef IGL_OUTER_HULL_DEBUG
- if (degenerated) {
- cerr << "eV: " << eV << std::endl;
- }
- #endif
- vector<bool> cons(uE2E[ui].size());
- // Loop over incident face edges
- for(size_t fei = 0;fei<uE2E[ui].size();fei++)
- {
- const auto & fe = uE2E[ui][fei];
- const auto f = fe % m;
- const auto c = fe / m;
- // source should match destination to be consistent
- cons[fei] = (d == F(f,(c+1)%3));
- assert( cons[fei] || (d == F(f,(c+2)%3)));
- assert(!cons[fei] || (s == F(f,(c+2)%3)));
- assert(!cons[fei] || (d == F(f,(c+1)%3)));
- // Angle between n and f
- const RowVector3N & n = N.row(f);
- #ifdef IGL_OUTER_HULL_DEBUG
- if (degenerated)
- cerr << "n " << fei << ": " << n << std::endl;
- #endif
- if (!all_faces_are_degenerated_and_coplanar) {
- di_I(fei, 0) = eVp.cross(n).dot(eV);
- } else {
- auto crossed = eVp.cross(n);
- di_I(fei, 0) = crossed.norm();
- int sign = eVp.cross(crossed).dot(eO);
- if (sign < 0) {
- di_I(fei, 0) *= -1;
- }
- }
- di_I(fei, 1) = eVp.dot(n);
- assert(di_I(fei,0) == di_I(fei,0) && "NaN Alert!");
- assert(di_I(fei,1) == di_I(fei,1) && "NaN Alert!");
- if (cons[fei]) {
- di_I(fei, 0) *= -1;
- di_I(fei, 1) *= -1;
- }
- di_I(fei, 0) *= -1; // Sort clockwise.
- // This signing is very important to make sure different edges sort
- // duplicate faces the same way, regardless of their orientations
- di_I(fei,2) = (cons[fei]?1.:-1.)*(f+1);
- }
- #if 0
- // Despite the effort to get stable normals the atan2 up doesn't
- // compute (exactly) -θ for -n if it computes θ for n. So just
- // explicitly check if there's a duplicate face
- // Shitty O(val^2) implementation
- for(size_t fei = 0;fei<uE2E[ui].size();fei++)
- {
- const auto & fe = uE2E[ui][fei];
- const auto f = fe % m;
- for(size_t gei = fei+1;gei<uE2E[ui].size();gei++)
- {
- const auto & ge = uE2E[ui][gei];
- const auto g = ge % m;
- if(duplicate_simplex(f,g))
- {
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"Forcing duplicate: "<<(f+1)<<","<<(g+1)<<endl;
- #endif
- di_I(gei,0) = di_I(fei,0);
- }
- }
- }
- #endif
- VectorXi IM;
- //igl::sort(di[ui],true,di[ui],IM);
- // Sort, but break ties using "signed index" to ensure that duplicates
- // always show up in same order.
- igl::sort_angles(di_I, IM);
- vector<typename DerivedF::Index> temp = uE2E[ui];
- #ifdef IGL_OUTER_HULL_DEBUG
- std::cout.precision(20);
- //std::cout << "sorted" << std::endl;
- #endif
- for(size_t fei = 0;fei<uE2E[ui].size();fei++)
- {
- #ifdef IGL_OUTER_HULL_DEBUG
- //std::cout << di_I.row(IM(fei)) << std::endl;
- #endif
- uE2E[ui][fei] = temp[IM(fei)];
- const auto & fe = uE2E[ui][fei];
- diIM(fe) = fei;
- dicons(fe) = cons[IM(fei)];
- }
- di[ui].resize(uE2E[ui].size());
- for (size_t i=0; i<di[ui].size(); i++) {
- di[ui][i] = di_I.row(IM(i)).segment<2>(0);
- }
- //MatrixXd s_di_I;
- //igl::sortrows(di_I,true,s_di_I,IM);
- //di[ui].resize(uE2E[ui].size());
- //for(size_t i = 0;i<di[ui].size();i++)
- //{
- // di[ui][i] = s_di_I(i,0);
- //}
- //// copy old list
- //vector<typename DerivedF::Index> temp = uE2E[ui];
- //for(size_t fei = 0;fei<uE2E[ui].size();fei++)
- //{
- // uE2E[ui][fei] = temp[IM(fei)];
- // const auto & fe = uE2E[ui][fei];
- // diIM(fe) = fei;
- // dicons(fe) = cons[IM(fei)];
- //}
- }
- vector<vector<vector<Index > > > TT,_1;
- triangle_triangle_adjacency(E,EMAP,uE2E,false,TT,_1);
- VectorXI counts;
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"facet components..."<<endl;
- #endif
- facet_components(TT,C,counts);
- assert(C.maxCoeff()+1 == counts.rows());
- const size_t ncc = counts.rows();
- G.resize(0,F.cols());
- J.resize(0,1);
- flip.setConstant(m,1,false);
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"reindex..."<<endl;
- #endif
- // H contains list of faces on outer hull;
- vector<bool> FH(m,false);
- vector<bool> EH(3*m,false);
- vector<MatrixXG> vG(ncc);
- vector<MatrixXJ> vJ(ncc);
- vector<MatrixXJ> vIM(ncc);
- size_t face_count = 0;
- for(size_t id = 0;id<ncc;id++)
- {
- vIM[id].resize(counts[id],1);
- }
- // current index into each IM
- vector<size_t> g(ncc,0);
- // place order of each face in its respective component
- for(Index f = 0;f<m;f++)
- {
- vIM[C(f)](g[C(f)]++) = f;
- }
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"barycenters..."<<endl;
- #endif
- // assumes that "resolve" has handled any coplanar cases correctly and nearly
- // coplanar cases can be sorted based on barycenter.
- MatrixXV BC;
- barycenter(V,F,BC);
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"loop over CCs (="<<ncc<<")..."<<endl;
- #endif
- for(Index id = 0;id<(Index)ncc;id++)
- {
- auto & IM = vIM[id];
- // starting face that's guaranteed to be on the outer hull and in this
- // component
- int f;
- bool f_flip;
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"outer facet..."<<endl;
- #endif
- outer_facet(V,F,N,IM,f,f_flip);
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"outer facet: "<<f<<endl;
- cout << V.row(F(f, 0)) << std::endl;
- cout << V.row(F(f, 1)) << std::endl;
- cout << V.row(F(f, 2)) << std::endl;
- #endif
- int FHcount = 1;
- FH[f] = true;
- // Q contains list of face edges to continue traversing upong
- queue<int> Q;
- Q.push(f+0*m);
- Q.push(f+1*m);
- Q.push(f+2*m);
- flip(f) = f_flip;
- //std::cout << "face " << face_count++ << ": " << f << std::endl;
- //std::cout << "f " << F.row(f).array()+1 << std::endl;
- //cout<<"flip("<<f<<") = "<<(flip(f)?"true":"false")<<endl;
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"BFS..."<<endl;
- #endif
- while(!Q.empty())
- {
- // face-edge
- const int e = Q.front();
- Q.pop();
- // face
- const int f = e%m;
- // corner
- const int c = e/m;
- #ifdef IGL_OUTER_HULL_DEBUG
- std::cout << "edge: " << e << ", ue: " << EMAP(e) << std::endl;
- std::cout << "face: " << f << std::endl;
- std::cout << "corner: " << c << std::endl;
- std::cout << "consistent: " << dicons(e) << std::endl;
- #endif
- // Should never see edge again...
- if(EH[e] == true)
- {
- continue;
- }
- EH[e] = true;
- // source of edge according to f
- const int fs = flip(f)?F(f,(c+2)%3):F(f,(c+1)%3);
- // destination of edge according to f
- const int fd = flip(f)?F(f,(c+1)%3):F(f,(c+2)%3);
- // edge valence
- const size_t val = uE2E[EMAP(e)].size();
- #ifdef IGL_OUTER_HULL_DEBUG
- std::cout << "vd: " << V.row(fd) << std::endl;
- std::cout << "vs: " << V.row(fs) << std::endl;
- std::cout << "edge: " << V.row(fd) - V.row(fs) << std::endl;
- for (size_t i=0; i<val; i++) {
- if (i == diIM(e)) {
- std::cout << "* ";
- } else {
- std::cout << " ";
- }
- std::cout << i << ": " << di[EMAP(e)][i].transpose()
- << " (e: " << uE2E[EMAP(e)][i] << ", f: "
- << uE2E[EMAP(e)][i] % m * (dicons(uE2E[EMAP(e)][i]) ? 1:-1) << ")" << std::endl;
- }
- #endif
- //// find overlapping face-edges
- //const auto & neighbors = uE2E[EMAP(e)];
- //// normal after possible flipping
- //const auto & fN = (flip(f)?-1.:1.)*N.row(f);
- //// Edge vector according to f's (flipped) orientation.
- ////const auto & eV = (V.row(fd)-V.row(fs)).normalized();
- //#warning "EXPERIMENTAL, DO NOT USE"
- //// THIS IS WRONG! The first face is---after sorting---no longer the face
- //// used for orienting the sort.
- //const auto ui = EMAP(e);
- //const auto fe0 = uE2E[ui][0];
- //const auto es = F(fe0%m,((fe0/m)+1)%3);
- // is edge consistent with edge of face used for sorting
- const int e_cons = (dicons(e) ? 1: -1);
- int nfei = -1;
- // Loop once around trying to find suitable next face
- for(size_t step = 1; step<val+2;step++)
- {
- const int nfei_new = (diIM(e) + 2*val + e_cons*step*(flip(f)?-1:1))%val;
- const int nf = uE2E[EMAP(e)][nfei_new] % m;
- // Don't consider faces with identical dihedral angles
- //if ((di[EMAP(e)][diIM(e)].array() != di[EMAP(e)][nfei_new].array()).any())
- //if((di[EMAP(e)][diIM(e)] != di[EMAP(e)][nfei_new]))
- //#warning "THIS IS HACK, FIX ME"
- // if( abs(di[EMAP(e)][diIM(e)] - di[EMAP(e)][nfei_new]) < 1e-15 )
- {
- #ifdef IGL_OUTER_HULL_DEBUG
- //cout<<"Next facet: "<<(f+1)<<" --> "<<(nf+1)<<", |"<<
- // di[EMAP(e)][diIM(e)]<<" - "<<di[EMAP(e)][nfei_new]<<"| = "<<
- // abs(di[EMAP(e)][diIM(e)] - di[EMAP(e)][nfei_new])
- // <<endl;
- #endif
-
- // Only use this face if not already seen
- if(!FH[nf])
- {
- nfei = nfei_new;
- //} else {
- // std::cout << "skipping face " << nfei_new << " because it is seen before"
- // << std::endl;
- }
- break;
- //} else {
- // std::cout << di[EMAP(e)][diIM(e)].transpose() << std::endl;
- // std::cout << di[EMAP(e)][diIM(nfei_new)].transpose() << std::endl;
- // std::cout << "skipping face " << nfei_new << " with identical dihedral angle"
- // << std::endl;
- }
- //#ifdef IGL_OUTER_HULL_DEBUG
- // cout<<"Skipping co-planar facet: "<<(f+1)<<" --> "<<(nf+1)<<endl;
- //#endif
- }
- int max_ne = -1;
- //// Loop over and find max dihedral angle
- //typename DerivedV::Scalar max_di = -1;
- //for(const auto & ne : neighbors)
- //{
- // const int nf = ne%m;
- // if(nf == f)
- // {
- // continue;
- // }
- // // Corner of neighbor
- // const int nc = ne/m;
- // // Is neighbor oriented consistently with (flipped) f?
- // //const int ns = F(nf,(nc+1)%3);
- // const int nd = F(nf,(nc+2)%3);
- // const bool cons = (flip(f)?fd:fs) == nd;
- // // Normal after possibly flipping to match flip or orientation of f
- // const auto & nN = (cons? (flip(f)?-1:1.) : (flip(f)?1.:-1.) )*N.row(nf);
- // // Angle between n and f
- // const auto & ndi = M_PI - atan2( fN.cross(nN).dot(eV), fN.dot(nN));
- // if(ndi>=max_di)
- // {
- // max_ne = ne;
- // max_di = ndi;
- // }
- //}
- ////cout<<(max_ne != max_ne_2)<<" =?= "<<e_cons<<endl;
- //if(max_ne != max_ne_2)
- //{
- // cout<<(f+1)<<" ---> "<<(max_ne%m)+1<<" != "<<(max_ne_2%m)+1<<" ... "<<e_cons<<" "<<flip(f)<<endl;
- // typename DerivedV::Scalar max_di = -1;
- // for(size_t nei = 0;nei<neighbors.size();nei++)
- // {
- // const auto & ne = neighbors[nei];
- // const int nf = ne%m;
- // if(nf == f)
- // {
- // cout<<" "<<(ne%m)+1<<":\t"<<0<<"\t"<<di[EMAP[e]][nei]<<" "<<diIM(ne)<<endl;
- // continue;
- // }
- // // Corner of neighbor
- // const int nc = ne/m;
- // // Is neighbor oriented consistently with (flipped) f?
- // //const int ns = F(nf,(nc+1)%3);
- // const int nd = F(nf,(nc+2)%3);
- // const bool cons = (flip(f)?fd:fs) == nd;
- // // Normal after possibly flipping to match flip or orientation of f
- // const auto & nN = (cons? (flip(f)?-1:1.) : (flip(f)?1.:-1.) )*N.row(nf);
- // // Angle between n and f
- // const auto & ndi = M_PI - atan2( fN.cross(nN).dot(eV), fN.dot(nN));
- // cout<<" "<<(ne%m)+1<<":\t"<<ndi<<"\t"<<di[EMAP[e]][nei]<<" "<<diIM(ne)<<endl;
- // if(ndi>=max_di)
- // {
- // max_ne = ne;
- // max_di = ndi;
- // }
- // }
- //}
- if(nfei >= 0)
- {
- max_ne = uE2E[EMAP(e)][nfei];
- }
- if(max_ne>=0)
- {
- // face of neighbor
- const int nf = max_ne%m;
- #ifdef IGL_OUTER_HULL_DEBUG
- if(!FH[nf])
- {
- // first time seeing face
- cout<<(f+1)<<" --> "<<(nf+1)<<endl;
- }
- #endif
- FH[nf] = true;
- //std::cout << "face " << face_count++ << ": " << nf << std::endl;
- //std::cout << "f " << F.row(nf).array()+1 << std::endl;
- FHcount++;
- // corner of neighbor
- const int nc = max_ne/m;
- const int nd = F(nf,(nc+2)%3);
- const bool cons = (flip(f)?fd:fs) == nd;
- flip(nf) = (cons ? flip(f) : !flip(f));
- //cout<<"flip("<<nf<<") = "<<(flip(nf)?"true":"false")<<endl;
- const int ne1 = nf+((nc+1)%3)*m;
- const int ne2 = nf+((nc+2)%3)*m;
- if(!EH[ne1])
- {
- Q.push(ne1);
- }
- if(!EH[ne2])
- {
- Q.push(ne2);
- }
- }
- }
-
- {
- vG[id].resize(FHcount,3);
- vJ[id].resize(FHcount,1);
- //nG += FHcount;
- size_t h = 0;
- assert(counts(id) == IM.rows());
- for(int i = 0;i<counts(id);i++)
- {
- const size_t f = IM(i);
- //if(f_flip)
- //{
- // flip(f) = !flip(f);
- //}
- if(FH[f])
- {
- vG[id].row(h) = (flip(f)?F.row(f).reverse().eval():F.row(f));
- vJ[id](h,0) = f;
- h++;
- }
- }
- assert((int)h == FHcount);
- }
- }
- // Is A inside B? Assuming A and B are consistently oriented but closed and
- // non-intersecting.
- const auto & is_component_inside_other = [](
- const Eigen::PlainObjectBase<DerivedV> & V,
- const MatrixXV & BC,
- const MatrixXG & A,
- const MatrixXJ & AJ,
- const MatrixXG & B)->bool
- {
- const auto & bounding_box = [](
- const Eigen::PlainObjectBase<DerivedV> & V,
- const MatrixXG & F)->
- MatrixXV
- {
- MatrixXV BB(2,3);
- BB<<
- 1e26,1e26,1e26,
- -1e26,-1e26,-1e26;
- const size_t m = F.rows();
- for(size_t f = 0;f<m;f++)
- {
- for(size_t c = 0;c<3;c++)
- {
- const auto & vfc = V.row(F(f,c));
- BB.row(0) = BB.row(0).array().min(vfc.array()).eval();
- BB.row(1) = BB.row(1).array().max(vfc.array()).eval();
- }
- }
- return BB;
- };
- // A lot of the time we're dealing with unrelated, distant components: cull
- // them.
- MatrixXV ABB = bounding_box(V,A);
- MatrixXV BBB = bounding_box(V,B);
- if( (BBB.row(0)-ABB.row(1)).maxCoeff()>0 ||
- (ABB.row(0)-BBB.row(1)).maxCoeff()>0 )
- {
- // bounding boxes do not overlap
- return false;
- }
- ////////////////////////////////////////////////////////////////////////
- // POTENTIAL ROBUSTNESS WEAK AREA
- ////////////////////////////////////////////////////////////////////////
- //
- // q could be so close (<~1e-15) to B that the winding number is not a robust way to
- // determine inside/outsideness. We could try to find a _better_ q which is
- // farther away, but couldn't they all be bad?
- MatrixXV q = BC.row(AJ(0));
- // In a perfect world, it's enough to test a single point.
- double w;
- // winding_number_3 expects colmajor
- const typename DerivedV::Scalar * Vdata;
- Vdata = V.data();
- Matrix<
- typename DerivedV::Scalar,
- DerivedV::RowsAtCompileTime,
- DerivedV::ColsAtCompileTime,
- ColMajor> Vcol;
- if(DerivedV::IsRowMajor)
- {
- // copy to convert to colmajor
- Vcol = V;
- Vdata = Vcol.data();
- }
- winding_number_3(
- Vdata,V.rows(),
- B.data(),B.rows(),
- q.data(),1,&w);
- return fabs(w)>0.5;
- };
- // Reject components which are completely inside other components
- vector<bool> keep(ncc,true);
- size_t nG = 0;
- // This is O( ncc * ncc * m)
- for(size_t id = 0;id<ncc;id++)
- {
- for(size_t oid = 0;oid<ncc;oid++)
- {
- if(id == oid)
- {
- continue;
- }
- const bool inside = is_component_inside_other(V,BC,vG[id],vJ[id],vG[oid]);
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<id<<" is inside "<<oid<<" ? "<<inside<<endl;
- #endif
- keep[id] = keep[id] && !inside;
- }
- if(keep[id])
- {
- nG += vJ[id].rows();
- }
- }
- // collect G and J across components
- G.resize(nG,3);
- J.resize(nG,1);
- {
- size_t off = 0;
- for(Index id = 0;id<(Index)ncc;id++)
- {
- if(keep[id])
- {
- assert(vG[id].rows() == vJ[id].rows());
- G.block(off,0,vG[id].rows(),vG[id].cols()) = vG[id];
- J.block(off,0,vJ[id].rows(),vJ[id].cols()) = vJ[id];
- off += vG[id].rows();
- }
- }
- }
- }
- template <
- typename DerivedV,
- typename DerivedF,
- typename DerivedG,
- typename DerivedJ,
- typename Derivedflip>
- IGL_INLINE void igl::outer_hull(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::PlainObjectBase<DerivedF> & F,
- Eigen::PlainObjectBase<DerivedG> & G,
- Eigen::PlainObjectBase<DerivedJ> & J,
- Eigen::PlainObjectBase<Derivedflip> & flip)
- {
- Eigen::Matrix<typename DerivedV::Scalar,DerivedF::RowsAtCompileTime,3> N;
- per_face_normals_stable(V,F,N);
- return outer_hull(V,F,N,G,J,flip);
- }
- template <
- typename Kernel,
- typename DerivedV,
- typename DerivedF,
- typename DerivedN,
- typename DerivedG,
- typename DerivedJ,
- typename Derivedflip>
- IGL_INLINE void igl::outer_hull_exact(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::PlainObjectBase<DerivedF> & F,
- const Eigen::PlainObjectBase<DerivedN> & N,
- Eigen::PlainObjectBase<DerivedG> & G,
- Eigen::PlainObjectBase<DerivedJ> & J,
- Eigen::PlainObjectBase<Derivedflip> & flip)
- {
- std::cout.precision(20);
- //for (size_t i=0; i<V.rows(); i++) {
- // std::cout << "v " << V.row(i) << std::endl;
- //}
- #ifdef IGL_OUTER_HULL_DEBUG
- std::cerr << "Extracting outer hull" << std::endl;
- writePLY("outer_hull_input.ply", V, F);
- #endif
- using namespace Eigen;
- using namespace std;
- typedef typename DerivedF::Index Index;
- Matrix<Index,DerivedF::RowsAtCompileTime,1> C;
- typedef Matrix<typename DerivedV::Scalar,Dynamic,DerivedV::ColsAtCompileTime> MatrixXV;
- typedef Matrix<typename DerivedF::Scalar,Dynamic,DerivedF::ColsAtCompileTime> MatrixXF;
- typedef Matrix<typename DerivedG::Scalar,Dynamic,DerivedG::ColsAtCompileTime> MatrixXG;
- typedef Matrix<typename DerivedJ::Scalar,Dynamic,DerivedJ::ColsAtCompileTime> MatrixXJ;
- typedef Matrix<typename DerivedN::Scalar,1,3> RowVector3N;
- const Index m = F.rows();
- const auto & duplicate_simplex = [&F](const int f, const int g)->bool
- {
- return
- (F(f,0) == F(g,0) && F(f,1) == F(g,1) && F(f,2) == F(g,2)) ||
- (F(f,1) == F(g,0) && F(f,2) == F(g,1) && F(f,0) == F(g,2)) ||
- (F(f,2) == F(g,0) && F(f,0) == F(g,1) && F(f,1) == F(g,2)) ||
- (F(f,0) == F(g,2) && F(f,1) == F(g,1) && F(f,2) == F(g,0)) ||
- (F(f,1) == F(g,2) && F(f,2) == F(g,1) && F(f,0) == F(g,0)) ||
- (F(f,2) == F(g,2) && F(f,0) == F(g,1) && F(f,1) == F(g,0));
- };
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"outer hull..."<<endl;
- #endif
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"edge map..."<<endl;
- #endif
- typedef Matrix<typename DerivedF::Scalar,Dynamic,2> MatrixX2I;
- typedef Matrix<typename DerivedF::Index,Dynamic,1> VectorXI;
- typedef Matrix<typename DerivedV::Scalar, 3, 1> Vector3F;
- MatrixX2I E,uE;
- VectorXI EMAP;
- vector<vector<typename DerivedF::Index> > uE2E;
- unique_edge_map(F,E,uE,EMAP,uE2E);
- #ifdef IGL_OUTER_HULL_DEBUG
- for (size_t ui=0; ui<uE.rows(); ui++) {
- std::cout << ui << ": " << uE2E[ui].size() << " -- (";
- for (size_t i=0; i<uE2E[ui].size(); i++) {
- std::cout << uE2E[ui][i] << ", ";
- }
- std::cout << ")" << std::endl;
- }
- #endif
- // TODO:
- // uE --> face-edge index, sorted CCW around edge according to normal
- // uE --> sorted order index
- // uE --> bool, whether needed to flip face to make "consistent" with unique
- // edge
- // Place order of each half-edge in its corresponding sorted list around edge
- VectorXI diIM(3*m);
- // Whether face's edge used for sorting is consistent with unique edge
- VectorXI dicons(3*m);
- // dihedral angles of faces around edge with face of edge in dicons
- vector<vector<typename Eigen::Vector2d> > di(uE2E.size());
- // For each list of face-edges incide on a unique edge
- for(size_t ui = 0;ui<(size_t)uE.rows();ui++)
- {
- // Base normal vector to orient against
- const auto fe0 = uE2E[ui][0];
- const RowVector3N & eVp = N.row(fe0%m);
- MatrixXd di_I(uE2E[ui].size(),3);
- const typename DerivedF::Scalar o = F(fe0%m, fe0/m);
- const typename DerivedF::Scalar d = F(fe0%m,((fe0/m)+2)%3);
- const typename DerivedF::Scalar s = F(fe0%m,((fe0/m)+1)%3);
- // Edge vector
- typename Kernel::Vector_3 exact_eV(
- V(d, 0) - V(s, 0),
- V(d, 1) - V(s, 1),
- V(d, 2) - V(s, 2));
- auto sq_length = exact_eV.squared_length();
- if (sq_length > 0.0) {
- exact_eV = exact_eV / sq_length;
- }
- RowVector3N eV(
- CGAL::to_double(exact_eV[0]),
- CGAL::to_double(exact_eV[1]),
- CGAL::to_double(exact_eV[2]));
- if (sq_length > 0.0) {
- eV.normalize();
- }
- vector<bool> cons(uE2E[ui].size());
- // Loop over incident face edges
- for(size_t fei = 0;fei<uE2E[ui].size();fei++)
- {
- const auto & fe = uE2E[ui][fei];
- const auto f = fe % m;
- const auto c = fe / m;
- // source should match destination to be consistent
- cons[fei] = (d == F(f,(c+1)%3));
- assert( cons[fei] || (d == F(f,(c+2)%3)));
- assert(!cons[fei] || (s == F(f,(c+2)%3)));
- assert(!cons[fei] || (d == F(f,(c+1)%3)));
- // Angle between n and f
- const RowVector3N & n = N.row(f);
- di_I(fei, 0) = eVp.cross(n).dot(eV);
- di_I(fei, 1) = eVp.dot(n);
- assert(di_I(fei,0) == di_I(fei,0) && "NaN Alert!");
- assert(di_I(fei,1) == di_I(fei,1) && "NaN Alert!");
- if (cons[fei]) {
- di_I(fei, 0) *= -1;
- di_I(fei, 1) *= -1;
- }
- di_I(fei, 0) *= -1; // Sort clockwise.
- // This signing is very important to make sure different edges sort
- // duplicate faces the same way, regardless of their orientations
- di_I(fei,2) = (cons[fei]?1.:-1.)*(f+1);
- }
- VectorXi IM;
- // Sort, but break ties using "signed index" to ensure that duplicates
- // always show up in same order.
- igl::sort_angles(di_I, IM);
- vector<typename DerivedF::Index> temp = uE2E[ui];
- #ifdef IGL_OUTER_HULL_DEBUG
- std::cout.precision(20);
- //std::cout << "sorted" << std::endl;
- #endif
- for(size_t fei = 0;fei<uE2E[ui].size();fei++)
- {
- #ifdef IGL_OUTER_HULL_DEBUG
- //std::cout << di_I.row(IM(fei)) << std::endl;
- #endif
- uE2E[ui][fei] = temp[IM(fei)];
- const auto & fe = uE2E[ui][fei];
- diIM(fe) = fei;
- dicons(fe) = cons[IM(fei)];
- }
- di[ui].resize(uE2E[ui].size());
- for (size_t i=0; i<di[ui].size(); i++) {
- di[ui][i] = di_I.row(IM(i)).segment<2>(0);
- }
- }
- vector<vector<vector<Index > > > TT,_1;
- triangle_triangle_adjacency(E,EMAP,uE2E,false,TT,_1);
- VectorXI counts;
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"facet components..."<<endl;
- #endif
- facet_components(TT,C,counts);
- assert(C.maxCoeff()+1 == counts.rows());
- const size_t ncc = counts.rows();
- G.resize(0,F.cols());
- J.resize(0,1);
- flip.setConstant(m,1,false);
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"reindex..."<<endl;
- #endif
- // H contains list of faces on outer hull;
- vector<bool> FH(m,false);
- vector<bool> EH(3*m,false);
- vector<MatrixXG> vG(ncc);
- vector<MatrixXJ> vJ(ncc);
- vector<MatrixXJ> vIM(ncc);
- size_t face_count = 0;
- for(size_t id = 0;id<ncc;id++)
- {
- vIM[id].resize(counts[id],1);
- }
- // current index into each IM
- vector<size_t> g(ncc,0);
- // place order of each face in its respective component
- for(Index f = 0;f<m;f++)
- {
- vIM[C(f)](g[C(f)]++) = f;
- }
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"barycenters..."<<endl;
- #endif
- // assumes that "resolve" has handled any coplanar cases correctly and nearly
- // coplanar cases can be sorted based on barycenter.
- MatrixXV BC;
- barycenter(V,F,BC);
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"loop over CCs (="<<ncc<<")..."<<endl;
- #endif
- for(Index id = 0;id<(Index)ncc;id++)
- {
- auto & IM = vIM[id];
- // starting face that's guaranteed to be on the outer hull and in this
- // component
- int f;
- bool f_flip;
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"outer facet..."<<endl;
- #endif
- outer_facet(V,F,N,IM,f,f_flip);
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"outer facet: "<<f<<endl;
- cout << V.row(F(f, 0)) << std::endl;
- cout << V.row(F(f, 1)) << std::endl;
- cout << V.row(F(f, 2)) << std::endl;
- #endif
- int FHcount = 1;
- FH[f] = true;
- // Q contains list of face edges to continue traversing upong
- queue<int> Q;
- Q.push(f+0*m);
- Q.push(f+1*m);
- Q.push(f+2*m);
- flip(f) = f_flip;
- //std::cout << "face " << face_count++ << ": " << f << std::endl;
- //std::cout << "f " << F.row(f).array()+1 << std::endl;
- //cout<<"flip("<<f<<") = "<<(flip(f)?"true":"false")<<endl;
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<"BFS..."<<endl;
- #endif
- while(!Q.empty())
- {
- // face-edge
- const int e = Q.front();
- Q.pop();
- // face
- const int f = e%m;
- // corner
- const int c = e/m;
- #ifdef IGL_OUTER_HULL_DEBUG
- std::cout << "edge: " << e << ", ue: " << EMAP(e) << std::endl;
- std::cout << "face: " << f << std::endl;
- std::cout << "corner: " << c << std::endl;
- std::cout << "consistent: " << dicons(e) << std::endl;
- #endif
- // Should never see edge again...
- if(EH[e] == true)
- {
- continue;
- }
- EH[e] = true;
- // source of edge according to f
- const int fs = flip(f)?F(f,(c+2)%3):F(f,(c+1)%3);
- // destination of edge according to f
- const int fd = flip(f)?F(f,(c+1)%3):F(f,(c+2)%3);
- // edge valence
- const size_t val = uE2E[EMAP(e)].size();
- #ifdef IGL_OUTER_HULL_DEBUG
- std::cout << "vd: " << V.row(fd) << std::endl;
- std::cout << "vs: " << V.row(fs) << std::endl;
- std::cout << "edge: " << V.row(fd) - V.row(fs) << std::endl;
- for (size_t i=0; i<val; i++) {
- if (i == diIM(e)) {
- std::cout << "* ";
- } else {
- std::cout << " ";
- }
- std::cout << i << ": " << di[EMAP(e)][i].transpose()
- << " (e: " << uE2E[EMAP(e)][i] << ", f: "
- << uE2E[EMAP(e)][i] % m * (dicons(uE2E[EMAP(e)][i]) ? 1:-1) << ")" << std::endl;
- }
- #endif
- // is edge consistent with edge of face used for sorting
- const int e_cons = (dicons(e) ? 1: -1);
- int nfei = -1;
- // Loop once around trying to find suitable next face
- for(size_t step = 1; step<val+2;step++)
- {
- const int nfei_new = (diIM(e) + 2*val + e_cons*step*(flip(f)?-1:1))%val;
- const int nf = uE2E[EMAP(e)][nfei_new] % m;
- {
- // Only use this face if not already seen
- if(!FH[nf])
- {
- nfei = nfei_new;
- }
- break;
- }
- }
- int max_ne = -1;
- if(nfei >= 0)
- {
- max_ne = uE2E[EMAP(e)][nfei];
- }
- if(max_ne>=0)
- {
- // face of neighbor
- const int nf = max_ne%m;
- #ifdef IGL_OUTER_HULL_DEBUG
- if(!FH[nf])
- {
- // first time seeing face
- cout<<(f+1)<<" --> "<<(nf+1)<<endl;
- }
- #endif
- FH[nf] = true;
- //std::cout << "face " << face_count++ << ": " << nf << std::endl;
- //std::cout << "f " << F.row(nf).array()+1 << std::endl;
- FHcount++;
- // corner of neighbor
- const int nc = max_ne/m;
- const int nd = F(nf,(nc+2)%3);
- const bool cons = (flip(f)?fd:fs) == nd;
- flip(nf) = (cons ? flip(f) : !flip(f));
- //cout<<"flip("<<nf<<") = "<<(flip(nf)?"true":"false")<<endl;
- const int ne1 = nf+((nc+1)%3)*m;
- const int ne2 = nf+((nc+2)%3)*m;
- if(!EH[ne1])
- {
- Q.push(ne1);
- }
- if(!EH[ne2])
- {
- Q.push(ne2);
- }
- }
- }
-
- {
- vG[id].resize(FHcount,3);
- vJ[id].resize(FHcount,1);
- //nG += FHcount;
- size_t h = 0;
- assert(counts(id) == IM.rows());
- for(int i = 0;i<counts(id);i++)
- {
- const size_t f = IM(i);
- //if(f_flip)
- //{
- // flip(f) = !flip(f);
- //}
- if(FH[f])
- {
- vG[id].row(h) = (flip(f)?F.row(f).reverse().eval():F.row(f));
- vJ[id](h,0) = f;
- h++;
- }
- }
- assert((int)h == FHcount);
- }
- }
- // Is A inside B? Assuming A and B are consistently oriented but closed and
- // non-intersecting.
- const auto & is_component_inside_other = [](
- const Eigen::PlainObjectBase<DerivedV> & V,
- const MatrixXV & BC,
- const MatrixXG & A,
- const MatrixXJ & AJ,
- const MatrixXG & B)->bool
- {
- const auto & bounding_box = [](
- const Eigen::PlainObjectBase<DerivedV> & V,
- const MatrixXG & F)->
- MatrixXV
- {
- MatrixXV BB(2,3);
- BB<<
- 1e26,1e26,1e26,
- -1e26,-1e26,-1e26;
- const size_t m = F.rows();
- for(size_t f = 0;f<m;f++)
- {
- for(size_t c = 0;c<3;c++)
- {
- const auto & vfc = V.row(F(f,c));
- BB.row(0) = BB.row(0).array().min(vfc.array()).eval();
- BB.row(1) = BB.row(1).array().max(vfc.array()).eval();
- }
- }
- return BB;
- };
- // A lot of the time we're dealing with unrelated, distant components: cull
- // them.
- MatrixXV ABB = bounding_box(V,A);
- MatrixXV BBB = bounding_box(V,B);
- if( (BBB.row(0)-ABB.row(1)).maxCoeff()>0 ||
- (ABB.row(0)-BBB.row(1)).maxCoeff()>0 )
- {
- // bounding boxes do not overlap
- return false;
- }
- ////////////////////////////////////////////////////////////////////////
- // POTENTIAL ROBUSTNESS WEAK AREA
- ////////////////////////////////////////////////////////////////////////
- //
- // q could be so close (<~1e-15) to B that the winding number is not a robust way to
- // determine inside/outsideness. We could try to find a _better_ q which is
- // farther away, but couldn't they all be bad?
- Matrix<double, 1, 3> q(
- CGAL::to_double(BC(AJ(0), 0)),
- CGAL::to_double(BC(AJ(0), 1)),
- CGAL::to_double(BC(AJ(0), 2)));
- // In a perfect world, it's enough to test a single point.
- double w;
- // winding_number_3 expects colmajor
- double* Vdata;
- Matrix<double,
- DerivedV::RowsAtCompileTime,
- DerivedV::ColsAtCompileTime,
- ColMajor> Vcol(V.rows(), V.cols());
- for (size_t i=0; i<V.rows(); i++) {
- for (size_t j=0; j<V.cols(); j++) {
- Vcol(i,j) = CGAL::to_double(V(i,j));
- }
- }
- Vdata = Vcol.data();
- winding_number_3(
- Vdata,V.rows(),
- B.data(),B.rows(),
- q.data(),1,&w);
- return fabs(w)>0.5;
- };
- // Reject components which are completely inside other components
- vector<bool> keep(ncc,true);
- size_t nG = 0;
- // This is O( ncc * ncc * m)
- for(size_t id = 0;id<ncc;id++)
- {
- for(size_t oid = 0;oid<ncc;oid++)
- {
- if(id == oid)
- {
- continue;
- }
- const bool inside = is_component_inside_other(V,BC,vG[id],vJ[id],vG[oid]);
- #ifdef IGL_OUTER_HULL_DEBUG
- cout<<id<<" is inside "<<oid<<" ? "<<inside<<endl;
- #endif
- keep[id] = keep[id] && !inside;
- }
- if(keep[id])
- {
- nG += vJ[id].rows();
- }
- }
- // collect G and J across components
- G.resize(nG,3);
- J.resize(nG,1);
- {
- size_t off = 0;
- for(Index id = 0;id<(Index)ncc;id++)
- {
- if(keep[id])
- {
- assert(vG[id].rows() == vJ[id].rows());
- G.block(off,0,vG[id].rows(),vG[id].cols()) = vG[id];
- J.block(off,0,vJ[id].rows(),vJ[id].cols()) = vJ[id];
- off += vG[id].rows();
- }
- }
- }
- }
- #ifdef IGL_STATIC_LIBRARY
- // Explicit template specialization
- template void igl::outer_hull<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<long, -1, 1, 0, -1, 1>, Eigen::Matrix<bool, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> >&, Eigen::PlainObjectBase<Eigen::Matrix<long, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<bool, -1, 1, 0, -1, 1> >&);
- template void igl::outer_hull<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&);
- template void igl::outer_hull<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<bool, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<bool, -1, 1, 0, -1, 1> >&);
- #endif
|