min_quad_dense.h 2.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798
  1. #ifndef IGL_MIN_QUAD_DENSE_H
  2. #define IGL_MIN_QUAD_DENSE_H
  3. #include <Eigen/Core>
  4. #include <Eigen/Dense>
  5. //// debug
  6. //#include <matlabinterface.h>
  7. //Engine *g_pEngine;
  8. #include <EPS.h>
  9. namespace igl
  10. {
  11. // MIN_QUAD_WITH_FIXED Minimize quadratic energy Z'*A*Z + Z'*B + C
  12. // subject to linear constraints Aeq*Z = Beq
  13. //
  14. // Templates:
  15. // T should be a eigen matrix primitive type like float or double
  16. // Inputs:
  17. // A n by n matrix of quadratic coefficients
  18. // B n by 1 column of linear coefficients
  19. // Aeq m by n list of linear equality constraint coefficients
  20. // Beq m by 1 list of linear equality constraint constant values
  21. // Outputs:
  22. // S n by (n + m) "solve" matrix, such that S*[B', Beq'] is a solution
  23. // Returns true on success, false on error
  24. template <typename T>
  25. void min_quad_dense_precompute(
  26. const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& A,
  27. const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& Aeq,
  28. Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& S)
  29. {
  30. typedef Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> Mat;
  31. // This threshold seems to matter a lot but I'm not sure how to
  32. // set it
  33. const T treshold = igl::FLOAT_EPS;
  34. //const T treshold = igl::DOUBLE_EPS;
  35. const int n = A.rows();
  36. assert(A.cols() == n);
  37. const int m = Aeq.rows();
  38. assert(Aeq.cols() == n);
  39. // Lagrange multipliers method:
  40. Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> LM(n + m, n + m);
  41. LM.block(0, 0, n, n) = A;
  42. LM.block(0, n, n, m) = Aeq.transpose();
  43. LM.block(n, 0, m, n) = Aeq;
  44. LM.block(n, n, m, m).setZero();
  45. typedef Eigen::Matrix<T, Eigen::Dynamic, 1> Vec;
  46. Vec singValues;
  47. Eigen::JacobiSVD<Mat> svd;
  48. svd.compute(LM, Eigen::ComputeFullU | Eigen::ComputeFullV );
  49. const Mat& u = svd.matrixU();
  50. const Mat& v = svd.matrixV();
  51. const Vec& singVals = svd.singularValues();
  52. Vec pi_singVals(n + m);
  53. int zeroed = 0;
  54. for (int i=0; i<n + m; i++)
  55. {
  56. T sv = singVals(i, 0);
  57. assert(sv >= 0);
  58. //printf("sv: %lg ? %lg\n",(double) sv,(double)treshold);
  59. if (sv > treshold) pi_singVals(i, 0) = T(1) / sv;
  60. else
  61. {
  62. pi_singVals(i, 0) = T(0);
  63. zeroed++;
  64. }
  65. }
  66. printf("min_quad_dense_precompute: %i singular values zeroed\n", zeroed);
  67. Eigen::DiagonalMatrix<T, Eigen::Dynamic> pi_diag(pi_singVals);
  68. Mat LMpinv = v * pi_diag * u.transpose();
  69. S = LMpinv.block(0, 0, n, n + m);
  70. //// debug:
  71. //mlinit(&g_pEngine);
  72. //
  73. //mlsetmatrix(&g_pEngine, "A", A);
  74. //mlsetmatrix(&g_pEngine, "Aeq", Aeq);
  75. //mlsetmatrix(&g_pEngine, "LM", LM);
  76. //mlsetmatrix(&g_pEngine, "u", u);
  77. //mlsetmatrix(&g_pEngine, "v", v);
  78. //MatrixXd svMat = singVals;
  79. //mlsetmatrix(&g_pEngine, "singVals", svMat);
  80. //mlsetmatrix(&g_pEngine, "LMpinv", LMpinv);
  81. //mlsetmatrix(&g_pEngine, "S", S);
  82. //int hu = 1;
  83. }
  84. }
  85. #endif