123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "AABB.h"
- #include "EPS.h"
- #include "barycenter.h"
- #include "barycentric_coordinates.h"
- #include "colon.h"
- #include "colon.h"
- #include "doublearea.h"
- #include "matlab_format.h"
- #include "point_simplex_squared_distance.h"
- #include "project_to_line_segment.h"
- #include "sort.h"
- #include "volume.h"
- #include "ray_box_intersect.h"
- #include "ray_mesh_intersect.h"
- #include <iostream>
- #include <iomanip>
- #include <limits>
- #include <list>
- #include <queue>
- #include <stack>
- template <typename DerivedV, int DIM>
- template <typename Derivedbb_mins, typename Derivedbb_maxs>
- inline void igl::AABB<DerivedV,DIM>::init(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const Eigen::PlainObjectBase<Derivedbb_mins> & bb_mins,
- const Eigen::PlainObjectBase<Derivedbb_maxs> & bb_maxs,
- const Eigen::VectorXi & elements,
- const int i)
- {
- using namespace std;
- using namespace Eigen;
- deinit();
- if(bb_mins.size() > 0)
- {
- assert(bb_mins.rows() == bb_maxs.rows() && "Serial tree arrays must match");
- assert(bb_mins.cols() == V.cols() && "Serial tree array dim must match V");
- assert(bb_mins.cols() == bb_maxs.cols() && "Serial tree arrays must match");
- assert(bb_mins.rows() == elements.rows() &&
- "Serial tree arrays must match");
- // construct from serialization
- m_box.extend(bb_mins.row(i).transpose());
- m_box.extend(bb_maxs.row(i).transpose());
- m_primitive = elements(i);
- // Not leaf then recurse
- if(m_primitive == -1)
- {
- m_left = new AABB();
- m_left->init( V,Ele,bb_mins,bb_maxs,elements,2*i+1);
- m_right = new AABB();
- m_right->init( V,Ele,bb_mins,bb_maxs,elements,2*i+2);
- //m_depth = std::max( m_left->m_depth, m_right->m_depth)+1;
- }
- }else
- {
- VectorXi allI = colon<int>(0,Ele.rows()-1);
- MatrixXDIMS BC;
- if(Ele.cols() == 1)
- {
- // points
- BC = V;
- }else
- {
- // Simplices
- barycenter(V,Ele,BC);
- }
- MatrixXi SI(BC.rows(),BC.cols());
- {
- MatrixXDIMS _;
- MatrixXi IS;
- igl::sort(BC,1,true,_,IS);
- // Need SI(i) to tell which place i would be sorted into
- const int dim = IS.cols();
- for(int i = 0;i<IS.rows();i++)
- {
- for(int d = 0;d<dim;d++)
- {
- SI(IS(i,d),d) = i;
- }
- }
- }
- init(V,Ele,SI,allI);
- }
- }
- template <typename DerivedV, int DIM>
- inline void igl::AABB<DerivedV,DIM>::init(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele)
- {
- using namespace Eigen;
- // deinit will be immediately called...
- return init(V,Ele,MatrixXDIMS(),MatrixXDIMS(),VectorXi(),0);
- }
- template <typename DerivedV, int DIM>
- inline void igl::AABB<DerivedV,DIM>::init(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const Eigen::MatrixXi & SI,
- const Eigen::VectorXi & I)
- {
- using namespace Eigen;
- using namespace std;
- deinit();
- if(V.size() == 0 || Ele.size() == 0 || I.size() == 0)
- {
- return;
- }
- assert(DIM == V.cols() && "V.cols() should matched declared dimension");
- //const Scalar inf = numeric_limits<Scalar>::infinity();
- m_box = AlignedBox<Scalar,DIM>();
- // Compute bounding box
- for(int i = 0;i<I.rows();i++)
- {
- for(int c = 0;c<Ele.cols();c++)
- {
- m_box.extend(V.row(Ele(I(i),c)).transpose());
- m_box.extend(V.row(Ele(I(i),c)).transpose());
- }
- }
- switch(I.size())
- {
- case 0:
- {
- assert(false);
- }
- case 1:
- {
- m_primitive = I(0);
- break;
- }
- default:
- {
- // Compute longest direction
- int max_d = -1;
- m_box.diagonal().maxCoeff(&max_d);
- // Can't use median on BC directly because many may have same value,
- // but can use median on sorted BC indices
- VectorXi SIdI(I.rows());
- for(int i = 0;i<I.rows();i++)
- {
- SIdI(i) = SI(I(i),max_d);
- }
- // Since later I use <= I think I don't need to worry about odd/even
- // Pass by copy to avoid changing input
- const auto median = [](VectorXi A)->Scalar
- {
- size_t n = A.size()/2;
- nth_element(A.data(),A.data()+n,A.data()+A.size());
- if(A.rows() % 2 == 1)
- {
- return A(n);
- }else
- {
- nth_element(A.data(),A.data()+n-1,A.data()+A.size());
- return 0.5*(A(n)+A(n-1));
- }
- };
- const Scalar med = median(SIdI);
- VectorXi LI((I.rows()+1)/2),RI(I.rows()/2);
- assert(LI.rows()+RI.rows() == I.rows());
- // Distribute left and right
- {
- int li = 0;
- int ri = 0;
- for(int i = 0;i<I.rows();i++)
- {
- if(SIdI(i)<=med)
- {
- LI(li++) = I(i);
- }else
- {
- RI(ri++) = I(i);
- }
- }
- }
- //m_depth = 0;
- if(LI.rows()>0)
- {
- m_left = new AABB();
- m_left->init(V,Ele,SI,LI);
- //m_depth = std::max(m_depth, m_left->m_depth+1);
- }
- if(RI.rows()>0)
- {
- m_right = new AABB();
- m_right->init(V,Ele,SI,RI);
- //m_depth = std::max(m_depth, m_right->m_depth+1);
- }
- }
- }
- }
- template <typename DerivedV, int DIM>
- inline bool igl::AABB<DerivedV,DIM>::is_leaf() const
- {
- return m_primitive != -1;
- }
- template <typename DerivedV, int DIM>
- template <typename Derivedq>
- inline std::vector<int> igl::AABB<DerivedV,DIM>::find(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const Eigen::PlainObjectBase<Derivedq> & q,
- const bool first) const
- {
- using namespace std;
- using namespace Eigen;
- assert(q.size() == DIM &&
- "Query dimension should match aabb dimension");
- assert(Ele.cols() == V.cols()+1 &&
- "AABB::find only makes sense for (d+1)-simplices");
- const Scalar epsilon = igl::EPS<Scalar>();
- // Check if outside bounding box
- bool inside = m_box.contains(q.transpose());
- if(!inside)
- {
- return std::vector<int>();
- }
- assert(m_primitive==-1 || (m_left == NULL && m_right == NULL));
- if(is_leaf())
- {
- // Initialize to some value > -epsilon
- Scalar a1=0,a2=0,a3=0,a4=0;
- switch(DIM)
- {
- case 3:
- {
- // Barycentric coordinates
- typedef Eigen::Matrix<Scalar,1,3> RowVector3S;
- const RowVector3S V1 = V.row(Ele(m_primitive,0));
- const RowVector3S V2 = V.row(Ele(m_primitive,1));
- const RowVector3S V3 = V.row(Ele(m_primitive,2));
- const RowVector3S V4 = V.row(Ele(m_primitive,3));
- a1 = volume_single(V2,V4,V3,(RowVector3S)q);
- a2 = volume_single(V1,V3,V4,(RowVector3S)q);
- a3 = volume_single(V1,V4,V2,(RowVector3S)q);
- a4 = volume_single(V1,V2,V3,(RowVector3S)q);
- break;
- }
- case 2:
- {
- // Barycentric coordinates
- typedef Eigen::Matrix<Scalar,2,1> Vector2S;
- const Vector2S V1 = V.row(Ele(m_primitive,0));
- const Vector2S V2 = V.row(Ele(m_primitive,1));
- const Vector2S V3 = V.row(Ele(m_primitive,2));
- // Hack for now to keep templates simple. If becomes bottleneck
- // consider using std::enable_if_t
- const Vector2S q2 = q.head(2);
- a1 = doublearea_single(V1,V2,q2);
- a2 = doublearea_single(V2,V3,q2);
- a3 = doublearea_single(V3,V1,q2);
- break;
- }
- default:assert(false);
- }
- // Normalization is important for correcting sign
- Scalar sum = a1+a2+a3+a4;
- a1 /= sum;
- a2 /= sum;
- a3 /= sum;
- a4 /= sum;
- if(
- a1>=-epsilon &&
- a2>=-epsilon &&
- a3>=-epsilon &&
- a4>=-epsilon)
- {
- return std::vector<int>(1,m_primitive);
- }else
- {
- return std::vector<int>();
- }
- }
- std::vector<int> left = m_left->find(V,Ele,q,first);
- if(first && !left.empty())
- {
- return left;
- }
- std::vector<int> right = m_right->find(V,Ele,q,first);
- if(first)
- {
- return right;
- }
- left.insert(left.end(),right.begin(),right.end());
- return left;
- }
- template <typename DerivedV, int DIM>
- inline int igl::AABB<DerivedV,DIM>::subtree_size() const
- {
- // 1 for self
- int n = 1;
- int n_left = 0,n_right = 0;
- if(m_left != NULL)
- {
- n_left = m_left->subtree_size();
- }
- if(m_right != NULL)
- {
- n_right = m_right->subtree_size();
- }
- n += 2*std::max(n_left,n_right);
- return n;
- }
- template <typename DerivedV, int DIM>
- template <typename Derivedbb_mins, typename Derivedbb_maxs>
- inline void igl::AABB<DerivedV,DIM>::serialize(
- Eigen::PlainObjectBase<Derivedbb_mins> & bb_mins,
- Eigen::PlainObjectBase<Derivedbb_maxs> & bb_maxs,
- Eigen::VectorXi & elements,
- const int i) const
- {
- using namespace std;
- using namespace Eigen;
- // Calling for root then resize output
- if(i==0)
- {
- const int m = subtree_size();
- //cout<<"m: "<<m<<endl;
- bb_mins.resize(m,DIM);
- bb_maxs.resize(m,DIM);
- elements.resize(m,1);
- }
- //cout<<i<<" ";
- bb_mins.row(i) = m_box.min();
- bb_maxs.row(i) = m_box.max();
- elements(i) = m_primitive;
- if(m_left != NULL)
- {
- m_left->serialize(bb_mins,bb_maxs,elements,2*i+1);
- }
- if(m_right != NULL)
- {
- m_right->serialize(bb_mins,bb_maxs,elements,2*i+2);
- }
- }
- template <typename DerivedV, int DIM>
- inline typename igl::AABB<DerivedV,DIM>::Scalar
- igl::AABB<DerivedV,DIM>::squared_distance(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const RowVectorDIMS & p,
- int & i,
- RowVectorDIMS & c) const
- {
- return squared_distance(V,Ele,p,std::numeric_limits<Scalar>::infinity(),i,c);
- }
- template <typename DerivedV, int DIM>
- inline typename igl::AABB<DerivedV,DIM>::Scalar
- igl::AABB<DerivedV,DIM>::squared_distance(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const RowVectorDIMS & p,
- Scalar min_sqr_d,
- int & i,
- RowVectorDIMS & c) const
- {
- using namespace Eigen;
- using namespace std;
- Scalar sqr_d = min_sqr_d;
- //assert(DIM == 3 && "Code has only been tested for DIM == 3");
- assert((Ele.cols() == 3 || Ele.cols() == 2 || Ele.cols() == 1)
- && "Code has only been tested for simplex sizes 3,2,1");
- assert(m_primitive==-1 || (m_left == NULL && m_right == NULL));
- if(is_leaf())
- {
- leaf_squared_distance(V,Ele,p,sqr_d,i,c);
- }else
- {
- bool looked_left = false;
- bool looked_right = false;
- const auto & look_left = [&]()
- {
- int i_left;
- RowVectorDIMS c_left = c;
- Scalar sqr_d_left = m_left->squared_distance(V,Ele,p,sqr_d,i_left,c_left);
- set_min(p,sqr_d_left,i_left,c_left,sqr_d,i,c);
- looked_left = true;
- };
- const auto & look_right = [&]()
- {
- int i_right;
- RowVectorDIMS c_right = c;
- Scalar sqr_d_right = m_right->squared_distance(V,Ele,p,sqr_d,i_right,c_right);
- set_min(p,sqr_d_right,i_right,c_right,sqr_d,i,c);
- looked_right = true;
- };
- // must look left or right if in box
- if(m_left->m_box.contains(p.transpose()))
- {
- look_left();
- }
- if(m_right->m_box.contains(p.transpose()))
- {
- look_right();
- }
- // if haven't looked left and could be less than current min, then look
- Scalar left_min_sqr_d = m_left->m_box.squaredExteriorDistance(p.transpose());
- Scalar right_min_sqr_d = m_right->m_box.squaredExteriorDistance(p.transpose());
- if(left_min_sqr_d < right_min_sqr_d)
- {
- if(!looked_left && left_min_sqr_d<sqr_d)
- {
- look_left();
- }
- if( !looked_right && right_min_sqr_d<sqr_d)
- {
- look_right();
- }
- }else
- {
- if( !looked_right && right_min_sqr_d<sqr_d)
- {
- look_right();
- }
- if(!looked_left && left_min_sqr_d<sqr_d)
- {
- look_left();
- }
- }
- }
- return sqr_d;
- }
- template <typename DerivedV, int DIM>
- template <
- typename DerivedP,
- typename DerivedsqrD,
- typename DerivedI,
- typename DerivedC>
- inline void igl::AABB<DerivedV,DIM>::squared_distance(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const Eigen::PlainObjectBase<DerivedP> & P,
- Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
- Eigen::PlainObjectBase<DerivedI> & I,
- Eigen::PlainObjectBase<DerivedC> & C) const
- {
- assert(P.cols() == V.cols() && "cols in P should match dim of cols in V");
- sqrD.resize(P.rows(),1);
- I.resize(P.rows(),1);
- C.resize(P.rows(),P.cols());
- for(int p = 0;p<P.rows();p++)
- {
- RowVectorDIMS Pp = P.row(p), c;
- int Ip;
- sqrD(p) = squared_distance(V,Ele,Pp,Ip,c);
- I(p) = Ip;
- C.row(p).head(DIM) = c;
- }
- }
- template <typename DerivedV, int DIM>
- template <
- typename Derivedother_V,
- typename DerivedsqrD,
- typename DerivedI,
- typename DerivedC>
- inline void igl::AABB<DerivedV,DIM>::squared_distance(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const AABB<Derivedother_V,DIM> & other,
- const Eigen::PlainObjectBase<Derivedother_V> & other_V,
- const Eigen::MatrixXi & other_Ele,
- Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
- Eigen::PlainObjectBase<DerivedI> & I,
- Eigen::PlainObjectBase<DerivedC> & C) const
- {
- assert(other_Ele.cols() == 1 &&
- "Only implemented for other as list of points");
- assert(other_V.cols() == V.cols() && "other must match this dimension");
- sqrD.setConstant(other_Ele.rows(),1,std::numeric_limits<double>::infinity());
- I.resize(other_Ele.rows(),1);
- C.resize(other_Ele.rows(),other_V.cols());
- // All points in other_V currently think they need to check against root of
- // this. The point of using another AABB is to quickly prune chunks of
- // other_V so that most points just check some subtree of this.
- // This holds a conservative estimate of max(sqr_D) where sqr_D is the
- // current best minimum squared distance for all points in this subtree
- double min_sqr_d = std::numeric_limits<double>::infinity();
- squared_distance_helper(
- V,Ele,&other,other_V,other_Ele,min_sqr_d,sqrD,I,C);
- }
- template <typename DerivedV, int DIM>
- template <
- typename Derivedother_V,
- typename DerivedsqrD,
- typename DerivedI,
- typename DerivedC>
- inline typename igl::AABB<DerivedV,DIM>::Scalar igl::AABB<DerivedV,DIM>::squared_distance_helper(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const AABB<Derivedother_V,DIM> * other,
- const Eigen::PlainObjectBase<Derivedother_V> & other_V,
- const Eigen::MatrixXi & other_Ele,
- const Scalar /*min_sqr_d*/,
- Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
- Eigen::PlainObjectBase<DerivedI> & I,
- Eigen::PlainObjectBase<DerivedC> & C) const
- {
- using namespace std;
- using namespace Eigen;
- // This implementation is a bit disappointing. There's no major speed up. Any
- // performance gains seem to come from accidental cache coherency and
- // diminish for larger "other" (the opposite of what was intended).
- // Base case
- if(other->is_leaf() && this->is_leaf())
- {
- Scalar sqr_d = sqrD(other->m_primitive);
- int i = I(other->m_primitive);
- RowVectorDIMS c = C.row( other->m_primitive);
- RowVectorDIMS p = other_V.row(other->m_primitive);
- leaf_squared_distance(V,Ele,p,sqr_d,i,c);
- sqrD( other->m_primitive) = sqr_d;
- I( other->m_primitive) = i;
- C.row(other->m_primitive) = c;
- //cout<<"leaf: "<<sqr_d<<endl;
- //other->m_max_sqr_d = sqr_d;
- return sqr_d;
- }
- if(other->is_leaf())
- {
- Scalar sqr_d = sqrD(other->m_primitive);
- int i = I(other->m_primitive);
- RowVectorDIMS c = C.row( other->m_primitive);
- RowVectorDIMS p = other_V.row(other->m_primitive);
- sqr_d = squared_distance(V,Ele,p,sqr_d,i,c);
- sqrD( other->m_primitive) = sqr_d;
- I( other->m_primitive) = i;
- C.row(other->m_primitive) = c;
- //other->m_max_sqr_d = sqr_d;
- return sqr_d;
- }
- //// Exact minimum squared distance between arbitary primitives inside this and
- //// othre's bounding boxes
- //const auto & min_squared_distance = [&](
- // const AABB<DerivedV,DIM> * A,
- // const AABB<Derivedother_V,DIM> * B)->Scalar
- //{
- // return A->m_box.squaredExteriorDistance(B->m_box);
- //};
- if(this->is_leaf())
- {
- //if(min_squared_distance(this,other) < other->m_max_sqr_d)
- if(true)
- {
- this->squared_distance_helper(
- V,Ele,other->m_left,other_V,other_Ele,0,sqrD,I,C);
- this->squared_distance_helper(
- V,Ele,other->m_right,other_V,other_Ele,0,sqrD,I,C);
- }else
- {
- // This is never reached...
- }
- //// we know other is not a leaf
- //other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
- return 0;
- }
- // FORCE DOWN TO OTHER LEAF EVAL
- //if(min_squared_distance(this,other) < other->m_max_sqr_d)
- if(true)
- {
- if(true)
- {
- this->squared_distance_helper(
- V,Ele,other->m_left,other_V,other_Ele,0,sqrD,I,C);
- this->squared_distance_helper(
- V,Ele,other->m_right,other_V,other_Ele,0,sqrD,I,C);
- }else // this direction never seems to be faster
- {
- this->m_left->squared_distance_helper(
- V,Ele,other,other_V,other_Ele,0,sqrD,I,C);
- this->m_right->squared_distance_helper(
- V,Ele,other,other_V,other_Ele,0,sqrD,I,C);
- }
- }else
- {
- // this is never reached ... :-(
- }
- //// we know other is not a leaf
- //other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
- return 0;
- #if 0 // False
- // _Very_ conservative approximation of maximum squared distance between
- // primitives inside this and other's bounding boxes
- const auto & max_squared_distance = [](
- const AABB<DerivedV,DIM> * A,
- const AABB<Derivedother_V,DIM> * B)->Scalar
- {
- AlignedBox<Scalar,DIM> combo = A->m_box;
- combo.extend(B->m_box);
- return combo.diagonal().squaredNorm();
- };
- //// other base-case
- //if(other->is_leaf())
- //{
- // double sqr_d = sqrD(other->m_primitive);
- // int i = I(other->m_primitive);
- // RowVectorDIMS c = C.row(m_primitive);
- // RowVectorDIMS p = other_V.row(m_primitive);
- // leaf_squared_distance(V,Ele,p,sqr_d,i,c);
- // sqrD(other->m_primitive) = sqr_d;
- // I(other->m_primitive) = i;
- // C.row(m_primitive) = c;
- // return;
- //}
- std::vector<const AABB<DerivedV,DIM> * > this_list;
- if(this->is_leaf())
- {
- this_list.push_back(this);
- }else
- {
- assert(this->m_left);
- this_list.push_back(this->m_left);
- assert(this->m_right);
- this_list.push_back(this->m_right);
- }
- std::vector<AABB<Derivedother_V,DIM> *> other_list;
- if(other->is_leaf())
- {
- other_list.push_back(other);
- }else
- {
- assert(other->m_left);
- other_list.push_back(other->m_left);
- assert(other->m_right);
- other_list.push_back(other->m_right);
- }
- //const std::function<Scalar(
- // const AABB<Derivedother_V,DIM> * other)
- // > max_sqr_d = [&sqrD,&max_sqr_d](const AABB<Derivedother_V,DIM> * other)->Scalar
- // {
- // if(other->is_leaf())
- // {
- // return sqrD(other->m_primitive);
- // }else
- // {
- // return std::max(max_sqr_d(other->m_left),max_sqr_d(other->m_right));
- // }
- // };
- //// Potentially recurse on all pairs, if minimum distance is less than running
- //// bound
- //Eigen::Matrix<Scalar,Eigen::Dynamic,1> other_max_sqr_d =
- // Eigen::Matrix<Scalar,Eigen::Dynamic,1>::Constant(other_list.size(),1,min_sqr_d);
- for(size_t child = 0;child<other_list.size();child++)
- {
- auto other_tree = other_list[child];
- Eigen::Matrix<Scalar,Eigen::Dynamic,1> this_max_sqr_d(this_list.size(),1);
- for(size_t t = 0;t<this_list.size();t++)
- {
- const auto this_tree = this_list[t];
- this_max_sqr_d(t) = max_squared_distance(this_tree,other_tree);
- }
- if(this_list.size() ==2 &&
- ( this_max_sqr_d(0) > this_max_sqr_d(1))
- )
- {
- std::swap(this_list[0],this_list[1]);
- //std::swap(this_max_sqr_d(0),this_max_sqr_d(1));
- }
- const Scalar sqr_d = this_max_sqr_d.minCoeff();
- for(size_t t = 0;t<this_list.size();t++)
- {
- const auto this_tree = this_list[t];
- //const auto mm = max_sqr_d(other_tree);
- //const Scalar mc = other_max_sqr_d(child);
- //assert(mc == mm);
- // Only look left/right in this_list if can possible decrease somebody's
- // distance in this_tree.
- const Scalar min_this_other = min_squared_distance(this_tree,other_tree);
- if(
- min_this_other < sqr_d &&
- min_this_other < other_tree->m_max_sqr_d)
- {
- //cout<<"before: "<<other_max_sqr_d(child)<<endl;
- //other_max_sqr_d(child) = std::min(
- // other_max_sqr_d(child),
- // this_tree->squared_distance_helper(
- // V,Ele,other_tree,other_V,other_Ele,other_max_sqr_d(child),sqrD,I,C));
- //cout<<"after: "<<other_max_sqr_d(child)<<endl;
- this_tree->squared_distance_helper(
- V,Ele,other_tree,other_V,other_Ele,0,sqrD,I,C);
- }
- }
- }
- //const Scalar ret = other_max_sqr_d.maxCoeff();
- //const auto mm = max_sqr_d(other);
- //assert(mm == ret);
- //cout<<"non-leaf: "<<ret<<endl;
- //return ret;
- if(!other->is_leaf())
- {
- other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
- }
- return 0;
- #endif
- }
- template <typename DerivedV, int DIM>
- inline void igl::AABB<DerivedV,DIM>::leaf_squared_distance(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const RowVectorDIMS & p,
- Scalar & sqr_d,
- int & i,
- RowVectorDIMS & c) const
- {
- using namespace Eigen;
- using namespace std;
- RowVectorDIMS c_candidate;
- Scalar sqr_d_candidate;
- igl::point_simplex_squared_distance<DIM>(
- p,V,Ele,m_primitive,sqr_d_candidate,c_candidate);
- set_min(p,sqr_d_candidate,m_primitive,c_candidate,sqr_d,i,c);
- }
- template <typename DerivedV, int DIM>
- inline void igl::AABB<DerivedV,DIM>::set_min(
- const RowVectorDIMS &
- #ifndef NDEBUG
- p
- #endif
- ,
- const Scalar sqr_d_candidate,
- const int i_candidate,
- const RowVectorDIMS & c_candidate,
- Scalar & sqr_d,
- int & i,
- RowVectorDIMS & c) const
- {
- #ifndef NDEBUG
- //std::cout<<matlab_format(c_candidate,"c_candidate")<<std::endl;
- const Scalar pc_norm = (p-c_candidate).squaredNorm();
- const Scalar diff = fabs(sqr_d_candidate - pc_norm);
- assert(diff<=1e-10 && "distance should match norm of difference");
- #endif
- if(sqr_d_candidate < sqr_d)
- {
- i = i_candidate;
- c = c_candidate;
- sqr_d = sqr_d_candidate;
- }
- }
- template <typename DerivedV, int DIM>
- inline bool
- igl::AABB<DerivedV,DIM>::intersect_ray(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const RowVectorDIMS & origin,
- const RowVectorDIMS & dir,
- std::vector<igl::Hit> & hits) const
- {
- hits.clear();
- const Scalar t0 = 0;
- const Scalar t1 = std::numeric_limits<Scalar>::infinity();
- {
- Scalar _1,_2;
- if(!ray_box_intersect(origin,dir,m_box,t0,t1,_1,_2))
- {
- return false;
- }
- }
- if(this->is_leaf())
- {
- // Actually process elements
- assert((Ele.size() == 0 || Ele.cols() == 3) && "Elements should be triangles");
- // Cheesecake way of hitting element
- return ray_mesh_intersect(origin,dir,V,Ele.row(m_primitive),hits);
- }
- std::vector<igl::Hit> left_hits;
- std::vector<igl::Hit> right_hits;
- const bool left_ret = m_left->intersect_ray(V,Ele,origin,dir,left_hits);
- const bool right_ret = m_right->intersect_ray(V,Ele,origin,dir,right_hits);
- hits.insert(hits.end(),left_hits.begin(),left_hits.end());
- hits.insert(hits.end(),right_hits.begin(),right_hits.end());
- return left_ret || right_ret;
- }
- template <typename DerivedV, int DIM>
- inline bool
- igl::AABB<DerivedV,DIM>::intersect_ray(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const RowVectorDIMS & origin,
- const RowVectorDIMS & dir,
- igl::Hit & hit) const
- {
- #if false
- // BFS
- std::queue<const AABB *> Q;
- // Or DFS
- //std::stack<const AABB *> Q;
- Q.push(this);
- bool any_hit = false;
- hit.t = std::numeric_limits<Scalar>::infinity();
- while(!Q.empty())
- {
- const AABB * tree = Q.front();
- //const AABB * tree = Q.top();
- Q.pop();
- {
- Scalar _1,_2;
- if(!ray_box_intersect(
- origin,dir,tree->m_box,Scalar(0),Scalar(hit.t),_1,_2))
- {
- continue;
- }
- }
- if(tree->is_leaf())
- {
- // Actually process elements
- assert((Ele.size() == 0 || Ele.cols() == 3) && "Elements should be triangles");
- igl::Hit leaf_hit;
- if(
- ray_mesh_intersect(origin,dir,V,Ele.row(tree->m_primitive),leaf_hit)&&
- leaf_hit.t < hit.t)
- {
- hit = leaf_hit;
- }
- continue;
- }
- // Add children to queue
- Q.push(tree->m_left);
- Q.push(tree->m_right);
- }
- return any_hit;
- #else
- // DFS
- return intersect_ray(
- V,Ele,origin,dir,std::numeric_limits<Scalar>::infinity(),hit);
- #endif
- }
- template <typename DerivedV, int DIM>
- inline bool
- igl::AABB<DerivedV,DIM>::intersect_ray(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const RowVectorDIMS & origin,
- const RowVectorDIMS & dir,
- const Scalar _min_t,
- igl::Hit & hit) const
- {
- //// Naive, slow
- //std::vector<igl::Hit> hits;
- //intersect_ray(V,Ele,origin,dir,hits);
- //if(hits.size() > 0)
- //{
- // hit = hits.front();
- // return true;
- //}else
- //{
- // return false;
- //}
- Scalar min_t = _min_t;
- const Scalar t0 = 0;
- {
- Scalar _1,_2;
- if(!ray_box_intersect(origin,dir,m_box,t0,min_t,_1,_2))
- {
- return false;
- }
- }
- if(this->is_leaf())
- {
- // Actually process elements
- assert((Ele.size() == 0 || Ele.cols() == 3) && "Elements should be triangles");
- // Cheesecake way of hitting element
- return ray_mesh_intersect(origin,dir,V,Ele.row(m_primitive),hit);
- }
- // Doesn't seem like smartly choosing left before/after right makes a
- // differnce
- igl::Hit left_hit;
- igl::Hit right_hit;
- bool left_ret = m_left->intersect_ray(V,Ele,origin,dir,min_t,left_hit);
- if(left_ret && left_hit.t<min_t)
- {
- // It's scary that this line doesn't seem to matter....
- min_t = left_hit.t;
- hit = left_hit;
- left_ret = true;
- }else
- {
- left_ret = false;
- }
- bool right_ret = m_right->intersect_ray(V,Ele,origin,dir,min_t,right_hit);
- if(right_ret && right_hit.t<min_t)
- {
- min_t = right_hit.t;
- hit = right_hit;
- right_ret = true;
- }else
- {
- right_ret = false;
- }
- return left_ret || right_ret;
- }
- #ifdef IGL_STATIC_LIBRARY
- // Explicit template specialization
- template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::init(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&);
- template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::init(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&);
- template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
- template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
- //template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, 1, 3, 1, 1, 3> const&, int&, Eigen::Matrix<double, 1, 3, 1, 1, 3>&) const;
- //template igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, 1, 3, 1, 1, 3> const&, int&;
- template double igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, 1, 3, 1, 1, 3> const&, int&, Eigen::Matrix<double, 1, 3, 1, 1, 3>&) const;
- template double igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::squared_distance(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, 1, 2, 1, 1, 2> const&, int&, Eigen::Matrix<double, 1, 2, 1, 1, 2>&) const;
- template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
- template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
- #endif
|