py_doc.cpp 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859
  1. const char *__doc_igl_principal_curvature = R"igl_Qu8mg5v7(// Compute the principal curvature directions and magnitude of the given triangle mesh
  2. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  3. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  4. // Inputs:
  5. // V eigen matrix #V by 3
  6. // F #F by 3 list of mesh faces (must be triangles)
  7. // radius controls the size of the neighbourhood used, 1 = average edge lenght
  8. //
  9. // Outputs:
  10. // PD1 #V by 3 maximal curvature direction for each vertex.
  11. // PD2 #V by 3 minimal curvature direction for each vertex.
  12. // PV1 #V by 1 maximal curvature value for each vertex.
  13. // PV2 #V by 1 minimal curvature value for each vertex.
  14. //
  15. // See also: average_onto_faces, average_onto_vertices
  16. //
  17. // This function has been developed by: Nikolas De Giorgis, Luigi Rocca and Enrico Puppo.
  18. // The algorithm is based on:
  19. // Efficient Multi-scale Curvature and Crease Estimation
  20. // Daniele Panozzo, Enrico Puppo, Luigi Rocca
  21. // GraVisMa, 2010)igl_Qu8mg5v7";
  22. const char *__doc_igl_local_basis = R"igl_Qu8mg5v7(// Compute a local orthogonal reference system for each triangle in the given mesh
  23. // Templates:
  24. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  25. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  26. // Inputs:
  27. // V eigen matrix #V by 3
  28. // F #F by 3 list of mesh faces (must be triangles)
  29. // Outputs:
  30. // B1 eigen matrix #F by 3, each vector is tangent to the triangle
  31. // B2 eigen matrix #F by 3, each vector is tangent to the triangle and perpendicular to B1
  32. // B3 eigen matrix #F by 3, normal of the triangle
  33. //
  34. // See also: adjacency_matrix)igl_Qu8mg5v7";
  35. const char *__doc_igl_signed_distance = R"igl_Qu8mg5v7(// Computes signed distance to a mesh
  36. //
  37. // Inputs:
  38. // P #P by 3 list of query point positions
  39. // V #V by 3 list of vertex positions
  40. // F #F by ss list of triangle indices, ss should be 3 unless sign_type ==
  41. // SIGNED_DISTANCE_TYPE_UNSIGNED
  42. // sign_type method for computing distance _sign_ S
  43. // Outputs:
  44. // S #P list of smallest signed distances
  45. // I #P list of facet indices corresponding to smallest distances
  46. // C #P by 3 list of closest points
  47. // N #P by 3 list of closest normals (only set if
  48. // sign_type=SIGNED_DISTANCE_TYPE_PSEUDONORMAL)
  49. //
  50. // Known bugs: This only computes distances to triangles. So unreferenced
  51. // vertices and degenerate triangles are ignored.)igl_Qu8mg5v7";
  52. const char *__doc_igl_signed_distance_pseudonormal = R"igl_Qu8mg5v7(// Computes signed distance to mesh
  53. //
  54. // Inputs:
  55. // tree AABB acceleration tree (see AABB.h)
  56. // F #F by 3 list of triangle indices
  57. // FN #F by 3 list of triangle normals
  58. // VN #V by 3 list of vertex normals (ANGLE WEIGHTING)
  59. // EN #E by 3 list of edge normals (UNIFORM WEIGHTING)
  60. // EMAP #F*3 mapping edges in F to E
  61. // q Query point
  62. // Returns signed distance to mesh
  63. //)igl_Qu8mg5v7";
  64. const char *__doc_igl_signed_distance_winding_number = R"igl_Qu8mg5v7(// Inputs:
  65. // tree AABB acceleration tree (see cgal/point_mesh_squared_distance.h)
  66. // hier Winding number evaluation hierarchy
  67. // q Query point
  68. // Returns signed distance to mesh)igl_Qu8mg5v7";
  69. const char *__doc_igl_cotmatrix = R"igl_Qu8mg5v7(// Constructs the cotangent stiffness matrix (discrete laplacian) for a given
  70. // mesh (V,F).
  71. //
  72. // Templates:
  73. // DerivedV derived type of eigen matrix for V (e.g. derived from
  74. // MatrixXd)
  75. // DerivedF derived type of eigen matrix for F (e.g. derived from
  76. // MatrixXi)
  77. // Scalar scalar type for eigen sparse matrix (e.g. double)
  78. // Inputs:
  79. // V #V by dim list of mesh vertex positions
  80. // F #F by simplex_size list of mesh faces (must be triangles)
  81. // Outputs:
  82. // L #V by #V cotangent matrix, each row i corresponding to V(i,:)
  83. //
  84. // See also: adjacency_matrix
  85. //
  86. // Note: This Laplacian uses the convention that diagonal entries are
  87. // **minus** the sum of off-diagonal entries. The diagonal entries are
  88. // therefore in general negative and the matrix is **negative** semi-definite
  89. // (immediately, -L is **positive** semi-definite)
  90. //
  91. // Known bugs: off by 1e-16 on regular grid. I think its a problem of
  92. // arithmetic order in cotmatrix_entries.h: C(i,e) = (arithmetic)/dblA/4)igl_Qu8mg5v7";
  93. const char *__doc_igl_floor = R"igl_Qu8mg5v7(// Floor a given matrix to nearest integers
  94. //
  95. // Inputs:
  96. // X m by n matrix of scalars
  97. // Outputs:
  98. // Y m by n matrix of floored integers)igl_Qu8mg5v7";
  99. const char *__doc_igl_slice = R"igl_Qu8mg5v7(// Act like the matlab X(row_indices,col_indices) operator, where
  100. // row_indices, col_indices are non-negative integer indices.
  101. //
  102. // Inputs:
  103. // X m by n matrix
  104. // R list of row indices
  105. // C list of column indices
  106. // Output:
  107. // Y #R by #C matrix
  108. //
  109. // See also: slice_mask)igl_Qu8mg5v7";
  110. const char *__doc_igl_per_face_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  111. // Inputs:
  112. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  113. // F #F by 3 eigen Matrix of face (triangle) indices
  114. // Z 3 vector normal given to faces with degenerate normal.
  115. // Output:
  116. // N #F by 3 eigen Matrix of mesh face (triangle) 3D normals
  117. //
  118. // Example:
  119. // // Give degenerate faces (1/3,1/3,1/3)^0.5
  120. // per_face_normals(V,F,Vector3d(1,1,1).normalized(),N);)igl_Qu8mg5v7";
  121. const char *__doc_igl_per_face_normals_stable = R"igl_Qu8mg5v7(// Special version where order of face indices is guaranteed not to effect
  122. // output.)igl_Qu8mg5v7";
  123. const char *__doc_igl_readOFF = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  124. // and texture coordinates. Mesh may have faces of any number of degree
  125. //
  126. // Templates:
  127. // Scalar type for positions and vectors (will be read as double and cast
  128. // to Scalar)
  129. // Index type for indices (will be read as int and cast to Index)
  130. // Inputs:
  131. // str path to .obj file
  132. // Outputs:
  133. // V double matrix of vertex positions #V by 3
  134. // F #F list of face indices into vertex positions
  135. // TC double matrix of texture coordinats #TC by 2
  136. // FTC #F list of face indices into vertex texture coordinates
  137. // N double matrix of corner normals #N by 3
  138. // FN #F list of face indices into vertex normals
  139. // Returns true on success, false on errors)igl_Qu8mg5v7";
  140. const char *__doc_igl_per_vertex_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  141. // Inputs:
  142. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  143. // F #F by 3 eigne Matrix of face (triangle) indices
  144. // weighting Weighting type
  145. // Output:
  146. // N #V by 3 eigen Matrix of mesh vertex 3D normals)igl_Qu8mg5v7";
  147. const char *__doc_igl_sortrows = R"igl_Qu8mg5v7(// Act like matlab's [Y,I] = sortrows(X)
  148. //
  149. // Templates:
  150. // DerivedX derived scalar type, e.g. MatrixXi or MatrixXd
  151. // DerivedI derived integer type, e.g. MatrixXi
  152. // Inputs:
  153. // X m by n matrix whose entries are to be sorted
  154. // ascending sort ascending (true, matlab default) or descending (false)
  155. // Outputs:
  156. // Y m by n matrix whose entries are sorted (**should not** be same
  157. // reference as X)
  158. // I m list of indices so that
  159. // Y = X(I,:);)igl_Qu8mg5v7";
  160. const char *__doc_igl_barycenter = R"igl_Qu8mg5v7(// Computes the barycenter of every simplex
  161. //
  162. // Inputs:
  163. // V #V x dim matrix of vertex coordinates
  164. // F #F x simplex_size matrix of indices of simplex corners into V
  165. // Output:
  166. // BC #F x dim matrix of 3d vertices
  167. //)igl_Qu8mg5v7";
  168. const char *__doc_igl_jet = R"igl_Qu8mg5v7(// JET like MATLAB's jet
  169. //
  170. // Inputs:
  171. // m number of colors
  172. // Outputs:
  173. // J m by list of RGB colors between 0 and 1
  174. //
  175. //#ifndef IGL_NO_EIGEN
  176. // void jet(const int m, Eigen::MatrixXd & J);
  177. //#endif
  178. // Wrapper for directly computing [r,g,b] values for a given factor f between
  179. // 0 and 1
  180. //
  181. // Inputs:
  182. // f factor determining color value as if 0 was min and 1 was max
  183. // Outputs:
  184. // r red value
  185. // g green value
  186. // b blue value)igl_Qu8mg5v7";
  187. const char *__doc_igl_cat = R"igl_Qu8mg5v7(// Perform concatenation of a two matrices along a single dimension
  188. // If dim == 1, then C = [A;B]. If dim == 2 then C = [A B]
  189. //
  190. // Template:
  191. // Scalar scalar data type for sparse matrices like double or int
  192. // Mat matrix type for all matrices (e.g. MatrixXd, SparseMatrix)
  193. // MatC matrix type for ouput matrix (e.g. MatrixXd) needs to support
  194. // resize
  195. // Inputs:
  196. // A first input matrix
  197. // B second input matrix
  198. // dim dimension along which to concatenate, 0 or 1
  199. // Outputs:
  200. // C output matrix
  201. // )igl_Qu8mg5v7";
  202. const char *__doc_igl_eigs = R"igl_Qu8mg5v7(See eigs for the documentation.)igl_Qu8mg5v7";
  203. const char *__doc_igl_per_corner_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  204. // Inputs:
  205. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  206. // F #F by 3 eigne Matrix of face (triangle) indices
  207. // corner_threshold threshold in degrees on sharp angles
  208. // Output:
  209. // CN #F*3 by 3 eigen Matrix of mesh vertex 3D normals, where the normal
  210. // for corner F(i,j) is at CN(i*3+j,:) )igl_Qu8mg5v7";
  211. const char *__doc_igl_massmatrix = R"igl_Qu8mg5v7(// Constructs the mass (area) matrix for a given mesh (V,F).
  212. //
  213. // Templates:
  214. // DerivedV derived type of eigen matrix for V (e.g. derived from
  215. // MatrixXd)
  216. // DerivedF derived type of eigen matrix for F (e.g. derived from
  217. // MatrixXi)
  218. // Scalar scalar type for eigen sparse matrix (e.g. double)
  219. // Inputs:
  220. // V #V by dim list of mesh vertex positions
  221. // F #F by simplex_size list of mesh faces (must be triangles)
  222. // type one of the following ints:
  223. // MASSMATRIX_TYPE_BARYCENTRIC barycentric
  224. // MASSMATRIX_TYPE_VORONOI voronoi-hybrid {default}
  225. // MASSMATRIX_TYPE_FULL full {not implemented}
  226. // Outputs:
  227. // M #V by #V mass matrix
  228. //
  229. // See also: adjacency_matrix
  230. //)igl_Qu8mg5v7";
  231. const char *__doc_igl_colon = R"igl_Qu8mg5v7(// Colon operator like matlab's colon operator. Enumerats values between low
  232. // and hi with step step.
  233. // Templates:
  234. // L should be a eigen matrix primitive type like int or double
  235. // S should be a eigen matrix primitive type like int or double
  236. // H should be a eigen matrix primitive type like int or double
  237. // T should be a eigen matrix primitive type like int or double
  238. // Inputs:
  239. // low starting value if step is valid then this is *always* the first
  240. // element of I
  241. // step step difference between sequential elements returned in I,
  242. // remember this will be cast to template T at compile time. If low<hi
  243. // then step must be positive. If low>hi then step must be negative.
  244. // Otherwise I will be set to empty.
  245. // hi ending value, if (hi-low)%step is zero then this will be the last
  246. // element in I. If step is positive there will be no elements greater
  247. // than hi, vice versa if hi<low
  248. // Output:
  249. // I list of values from low to hi with step size step)igl_Qu8mg5v7";
  250. const char *__doc_igl_fit_rotations = R"igl_Qu8mg5v7(// Known issues: This seems to be implemented in Eigen/Geometry:
  251. // Eigen::umeyama
  252. //
  253. // FIT_ROTATIONS Given an input mesh and new positions find rotations for
  254. // every covariance matrix in a stack of covariance matrices
  255. //
  256. // Inputs:
  257. // S nr*dim by dim stack of covariance matrices
  258. // single_precision whether to use single precision (faster)
  259. // Outputs:
  260. // R dim by dim * nr list of rotations
  261. //)igl_Qu8mg5v7";
  262. const char *__doc_igl_fit_rotations_planar = R"igl_Qu8mg5v7(// FIT_ROTATIONS Given an input mesh and new positions find 2D rotations for
  263. // every vertex that best maps its one ring to the new one ring
  264. //
  265. // Inputs:
  266. // S nr*dim by dim stack of covariance matrices, third column and every
  267. // third row will be ignored
  268. // Outputs:
  269. // R dim by dim * nr list of rotations, third row and third column of each
  270. // rotation will just be identity
  271. //)igl_Qu8mg5v7";
  272. const char *__doc_igl_fit_rotations_SSE = R"igl_Qu8mg5v7(See fit_rotations_SSE for the documentation.)igl_Qu8mg5v7";
  273. const char *__doc_igl_rotate_vectors = R"igl_Qu8mg5v7(// Rotate the vectors V by A radiants on the tangent plane spanned by B1 and
  274. // B2
  275. //
  276. // Inputs:
  277. // V #V by 3 eigen Matrix of vectors
  278. // A #V eigen vector of rotation angles or a single angle to be applied
  279. // to all vectors
  280. // B1 #V by 3 eigen Matrix of base vector 1
  281. // B2 #V by 3 eigen Matrix of base vector 2
  282. //
  283. // Output:
  284. // Returns the rotated vectors
  285. //)igl_Qu8mg5v7";
  286. const char *__doc_igl_read_triangle_mesh = R"igl_Qu8mg5v7(// read mesh from an ascii file with automatic detection of file format.
  287. // supported: obj, off, stl, wrl, ply, mesh)
  288. //
  289. // Templates:
  290. // Scalar type for positions and vectors (will be read as double and cast
  291. // to Scalar)
  292. // Index type for indices (will be read as int and cast to Index)
  293. // Inputs:
  294. // str path to file
  295. // Outputs:
  296. // V eigen double matrix #V by 3
  297. // F eigen int matrix #F by 3
  298. // Returns true iff success)igl_Qu8mg5v7";
  299. const char *__doc_igl_gaussian_curvature = R"igl_Qu8mg5v7(// Compute discrete local integral gaussian curvature (angle deficit, without
  300. // averaging by local area).
  301. //
  302. // Inputs:
  303. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  304. // F #F by 3 eigen Matrix of face (triangle) indices
  305. // Output:
  306. // K #V by 1 eigen Matrix of discrete gaussian curvature values
  307. //)igl_Qu8mg5v7";
  308. const char *__doc_igl_avg_edge_length = R"igl_Qu8mg5v7(// Compute the average edge length for the given triangle mesh
  309. // Templates:
  310. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  311. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  312. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  313. // Inputs:
  314. // V eigen matrix #V by 3
  315. // F #F by simplex-size list of mesh faces (must be simplex)
  316. // Outputs:
  317. // l average edge length
  318. //
  319. // See also: adjacency_matrix)igl_Qu8mg5v7";
  320. const char *__doc_igl_barycentric_coordinates = R"igl_Qu8mg5v7(// Compute barycentric coordinates in a tet
  321. //
  322. // Inputs:
  323. // P #P by 3 Query points in 3d
  324. // A #P by 3 Tet corners in 3d
  325. // B #P by 3 Tet corners in 3d
  326. // C #P by 3 Tet corners in 3d
  327. // D #P by 3 Tet corners in 3d
  328. // Outputs:
  329. // L #P by 4 list of barycentric coordinates
  330. // )igl_Qu8mg5v7";
  331. const char *__doc_igl_lscm = R"igl_Qu8mg5v7(// Compute a Least-squares conformal map parametrization (equivalently
  332. // derived in "Intrinsic Parameterizations of Surface Meshes" [Desbrun et al.
  333. // 2002] and "Least Squares Conformal Maps for Automatic Texture Atlas
  334. // Generation" [Lévy et al. 2002]), though this implementation follows the
  335. // derivation in: "Spectral Conformal Parameterization" [Mullen et al. 2008]
  336. // (note, this does **not** implement the Eigen-decomposition based method in
  337. // [Mullen et al. 2008], which is not equivalent). Input should be a manifold
  338. // mesh (also no unreferenced vertices) and "boundary" (fixed vertices) `b`
  339. // should contain at least two vertices per connected component.
  340. //
  341. // Inputs:
  342. // V #V by 3 list of mesh vertex positions
  343. // F #F by 3 list of mesh faces (must be triangles)
  344. // b #b boundary indices into V
  345. // bc #b by 3 list of boundary values
  346. // Outputs:
  347. // UV #V by 2 list of 2D mesh vertex positions in UV space
  348. // Returns true only on solver success.
  349. //)igl_Qu8mg5v7";
  350. const char *__doc_igl_find_cross_field_singularities = R"igl_Qu8mg5v7(// Inputs:
  351. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  352. // F #F by 3 eigen Matrix of face (quad) indices
  353. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  354. // across all face edges
  355. // Output:
  356. // isSingularity #V by 1 boolean eigen Vector indicating the presence of a singularity on a vertex
  357. // singularityIndex #V by 1 integer eigen Vector containing the singularity indices
  358. //)igl_Qu8mg5v7";
  359. const char *__doc_igl_upsample = R"igl_Qu8mg5v7(// Subdivide a mesh without moving vertices: loop subdivision but odd
  360. // vertices stay put and even vertices are just edge midpoints
  361. //
  362. // Templates:
  363. // MatV matrix for vertex positions, e.g. MatrixXd
  364. // MatF matrix for vertex positions, e.g. MatrixXi
  365. // Inputs:
  366. // V #V by dim mesh vertices
  367. // F #F by 3 mesh triangles
  368. // Outputs:
  369. // NV new vertex positions, V is guaranteed to be at top
  370. // NF new list of face indices
  371. //
  372. // NOTE: V should not be the same as NV,
  373. // NOTE: F should not be the same as NF, use other proto
  374. //
  375. // Known issues:
  376. // - assumes (V,F) is edge-manifold.)igl_Qu8mg5v7";
  377. const char *__doc_igl_slice_mask = R"igl_Qu8mg5v7(// Act like the matlab X(row_mask,col_mask) operator, where
  378. // row_mask, col_mask are non-negative integer indices.
  379. //
  380. // Inputs:
  381. // X m by n matrix
  382. // R m list of row bools
  383. // C n list of column bools
  384. // Output:
  385. // Y #trues-in-R by #trues-in-C matrix
  386. //
  387. // See also: slice_mask)igl_Qu8mg5v7";
  388. const char *__doc_igl_point_mesh_squared_distance = R"igl_Qu8mg5v7(// Compute distances from a set of points P to a triangle mesh (V,F)
  389. //
  390. // Inputs:
  391. // P #P by 3 list of query point positions
  392. // V #V by 3 list of vertex positions
  393. // Ele #Ele by (3|2|1) list of (triangle|edge|point) indices
  394. // Outputs:
  395. // sqrD #P list of smallest squared distances
  396. // I #P list of primitive indices corresponding to smallest distances
  397. // C #P by 3 list of closest points
  398. //
  399. // Known bugs: This only computes distances to given primitivess. So
  400. // unreferenced vertices are ignored. However, degenerate primitives are
  401. // handled correctly: triangle [1 2 2] is treated as a segment [1 2], and
  402. // triangle [1 1 1] is treated as a point. So one _could_ add extra
  403. // combinatorially degenerate rows to Ele for all unreferenced vertices to
  404. // also get distances to points.)igl_Qu8mg5v7";
  405. const char *__doc_igl_parula = R"igl_Qu8mg5v7(// PARULA like MATLAB's parula
  406. //
  407. // Inputs:
  408. // m number of colors
  409. // Outputs:
  410. // J m by list of RGB colors between 0 and 1
  411. //
  412. // Wrapper for directly computing [r,g,b] values for a given factor f between
  413. // 0 and 1
  414. //
  415. // Inputs:
  416. // f factor determining color value as if 0 was min and 1 was max
  417. // Outputs:
  418. // r red value
  419. // g green value
  420. // b blue value)igl_Qu8mg5v7";
  421. const char *__doc_igl_setdiff = R"igl_Qu8mg5v7(// Set difference of elements of matrices
  422. //
  423. // Inputs:
  424. // A m-long vector of indices
  425. // B n-long vector of indices
  426. // Outputs:
  427. // C (k<=m)-long vector of unique elements appearing in A but not in B
  428. // IA (k<=m)-long list of indices into A so that C = A(IA)
  429. //)igl_Qu8mg5v7";
  430. const char *__doc_igl_comb_frame_field = R"igl_Qu8mg5v7(// Inputs:
  431. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  432. // F #F by 4 eigen Matrix of face (quad) indices
  433. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  434. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  435. // BIS1_combed #F by 3 eigen Matrix of the first combed bisector field vector
  436. // BIS2_combed #F by 3 eigen Matrix of the second combed bisector field vector
  437. // Output:
  438. // PD1_combed #F by 3 eigen Matrix of the first combed cross field vector
  439. // PD2_combed #F by 3 eigen Matrix of the second combed cross field vector
  440. //)igl_Qu8mg5v7";
  441. const char *__doc_igl_map_vertices_to_circle = R"igl_Qu8mg5v7(// Map the vertices whose indices are in a given boundary loop (bnd) on the
  442. // unit circle with spacing proportional to the original boundary edge
  443. // lengths.
  444. //
  445. // Inputs:
  446. // V #V by dim list of mesh vertex positions
  447. // b #W list of vertex ids
  448. // Outputs:
  449. // UV #W by 2 list of 2D position on the unit circle for the vertices in b)igl_Qu8mg5v7";
  450. const char *__doc_igl_writeOBJ = R"igl_Qu8mg5v7(// Write a mesh in an ascii obj file
  451. // Inputs:
  452. // str path to outputfile
  453. // V #V by 3 mesh vertex positions
  454. // F #F by 3|4 mesh indices into V
  455. // CN #CN by 3 normal vectors
  456. // FN #F by 3|4 corner normal indices into CN
  457. // TC #TC by 2|3 texture coordinates
  458. // FTC #F by 3|4 corner texture coord indices into TC
  459. // Returns true on success, false on error)igl_Qu8mg5v7";
  460. const char *__doc_igl_active_set = R"igl_Qu8mg5v7(// Known Bugs: rows of [Aeq;Aieq] **must** be linearly independent. Should be
  461. // using QR decomposition otherwise:
  462. // http://www.okstate.edu/sas/v8/sashtml/ormp/chap5/sect32.htm
  463. //
  464. // ACTIVE_SET Minimize quadratic energy
  465. //
  466. // 0.5*Z'*A*Z + Z'*B + C with constraints
  467. //
  468. // that Z(known) = Y, optionally also subject to the constraints Aeq*Z = Beq,
  469. // and further optionally subject to the linear inequality constraints that
  470. // Aieq*Z <= Bieq and constant inequality constraints lx <= x <= ux
  471. //
  472. // Inputs:
  473. // A n by n matrix of quadratic coefficients
  474. // B n by 1 column of linear coefficients
  475. // known list of indices to known rows in Z
  476. // Y list of fixed values corresponding to known rows in Z
  477. // Aeq meq by n list of linear equality constraint coefficients
  478. // Beq meq by 1 list of linear equality constraint constant values
  479. // Aieq mieq by n list of linear inequality constraint coefficients
  480. // Bieq mieq by 1 list of linear inequality constraint constant values
  481. // lx n by 1 list of lower bounds [] implies -Inf
  482. // ux n by 1 list of upper bounds [] implies Inf
  483. // params struct of additional parameters (see below)
  484. // Z if not empty, is taken to be an n by 1 list of initial guess values
  485. // (see output)
  486. // Outputs:
  487. // Z n by 1 list of solution values
  488. // Returns true on success, false on error
  489. //
  490. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  491. // secs, igl/min_quad_with_fixed.h 7.1 secs
  492. //)igl_Qu8mg5v7";
  493. const char *__doc_igl_per_edge_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  494. // Inputs:
  495. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  496. // F #F by 3 eigen Matrix of face (triangle) indices
  497. // weight weighting type
  498. // FN #F by 3 matrix of 3D face normals per face
  499. // Output:
  500. // N #2 by 3 matrix of mesh edge 3D normals per row
  501. // E #E by 2 matrix of edge indices per row
  502. // EMAP #E by 1 matrix of indices from all edges to E
  503. //)igl_Qu8mg5v7";
  504. const char *__doc_igl_covariance_scatter_matrix = R"igl_Qu8mg5v7(// Construct the covariance scatter matrix for a given arap energy
  505. // Inputs:
  506. // V #V by Vdim list of initial domain positions
  507. // F #F by 3 list of triangle indices into V
  508. // energy ARAPEnergyType enum value defining which energy is being used.
  509. // See ARAPEnergyType.h for valid options and explanations.
  510. // Outputs:
  511. // CSM dim*#V/#F by dim*#V sparse matrix containing special laplacians along
  512. // the diagonal so that when multiplied by V gives covariance matrix
  513. // elements, can be used to speed up covariance matrix computation)igl_Qu8mg5v7";
  514. const char *__doc_igl_boundary_facets = R"igl_Qu8mg5v7(// BOUNDARY_FACETS Determine boundary faces (edges) of tetrahedra (triangles)
  515. // stored in T (analogous to qptoolbox's `outline` and `boundary_faces`).
  516. //
  517. // Templates:
  518. // IntegerT integer-value: e.g. int
  519. // IntegerF integer-value: e.g. int
  520. // Input:
  521. // T tetrahedron (triangle) index list, m by 4 (3), where m is the number of tetrahedra
  522. // Output:
  523. // F list of boundary faces, n by 3 (2), where n is the number of boundary faces
  524. //
  525. //)igl_Qu8mg5v7";
  526. const char *__doc_igl_compute_frame_field_bisectors = R"igl_Qu8mg5v7(// Compute bisectors of a frame field defined on mesh faces
  527. // Inputs:
  528. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  529. // F #F by 3 eigen Matrix of face (triangle) indices
  530. // B1 #F by 3 eigen Matrix of face (triangle) base vector 1
  531. // B2 #F by 3 eigen Matrix of face (triangle) base vector 2
  532. // PD1 #F by 3 eigen Matrix of the first per face frame field vector
  533. // PD2 #F by 3 eigen Matrix of the second per face frame field vector
  534. // Output:
  535. // BIS1 #F by 3 eigen Matrix of the first per face frame field bisector
  536. // BIS2 #F by 3 eigen Matrix of the second per face frame field bisector
  537. //)igl_Qu8mg5v7";
  538. const char *__doc_igl_edge_lengths = R"igl_Qu8mg5v7(// Constructs a list of lengths of edges opposite each index in a face
  539. // (triangle/tet) list
  540. //
  541. // Templates:
  542. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  543. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  544. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  545. // Inputs:
  546. // V eigen matrix #V by 3
  547. // F #F by 2 list of mesh edges
  548. // or
  549. // F #F by 3 list of mesh faces (must be triangles)
  550. // or
  551. // T #T by 4 list of mesh elements (must be tets)
  552. // Outputs:
  553. // L #F by {1|3|6} list of edge lengths
  554. // for edges, column of lengths
  555. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  556. // for tets, columns correspond to edges
  557. // [3 0],[3 1],[3 2],[1 2],[2 0],[0 1]
  558. //)igl_Qu8mg5v7";
  559. const char *__doc_igl_readOBJ = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  560. // and texture coordinates. Mesh may have faces of any number of degree
  561. //
  562. // Templates:
  563. // Scalar type for positions and vectors (will be read as double and cast
  564. // to Scalar)
  565. // Index type for indices (will be read as int and cast to Index)
  566. // Inputs:
  567. // str path to .obj file
  568. // Outputs:
  569. // V double matrix of vertex positions #V by 3
  570. // TC double matrix of texture coordinats #TC by 2
  571. // N double matrix of corner normals #N by 3
  572. // F #F list of face indices into vertex positions
  573. // FTC #F list of face indices into vertex texture coordinates
  574. // FN #F list of face indices into vertex normals
  575. // Returns true on success, false on errors)igl_Qu8mg5v7";
  576. const char *__doc_igl_cut_mesh_from_singularities = R"igl_Qu8mg5v7(// Given a mesh (V,F) and the integer mismatch of a cross field per edge
  577. // (MMatch), finds the cut_graph connecting the singularities (seams) and the
  578. // degree of the singularities singularity_index
  579. //
  580. // Input:
  581. // V #V by 3 list of mesh vertex positions
  582. // F #F by 3 list of faces
  583. // MMatch #F by 3 list of per corner integer mismatch
  584. // Outputs:
  585. // seams #F by 3 list of per corner booleans that denotes if an edge is a
  586. // seam or not
  587. //)igl_Qu8mg5v7";
  588. const char *__doc_igl_readDMAT = R"igl_Qu8mg5v7(See readDMAT for the documentation.)igl_Qu8mg5v7";
  589. const char *__doc_igl_doublearea = R"igl_Qu8mg5v7(// DOUBLEAREA computes twice the area for each input triangle[quad]
  590. //
  591. // Templates:
  592. // DerivedV derived type of eigen matrix for V (e.g. derived from
  593. // MatrixXd)
  594. // DerivedF derived type of eigen matrix for F (e.g. derived from
  595. // MatrixXi)
  596. // DeriveddblA derived type of eigen matrix for dblA (e.g. derived from
  597. // MatrixXd)
  598. // Inputs:
  599. // V #V by dim list of mesh vertex positions
  600. // F #F by simplex_size list of mesh faces (must be triangles or quads)
  601. // Outputs:
  602. // dblA #F list of triangle[quad] double areas (SIGNED only for 2D input)
  603. //
  604. // Known bug: For dim==3 complexity is O(#V + #F)!! Not just O(#F). This is a big deal
  605. // if you have 1million unreferenced vertices and 1 face)igl_Qu8mg5v7";
  606. const char *__doc_igl_doublearea_single = R"igl_Qu8mg5v7(// Single triangle in 2D!
  607. //
  608. // This should handle streams of corners not just single corners)igl_Qu8mg5v7";
  609. const char *__doc_igl_doublearea_quad = R"igl_Qu8mg5v7(// DOUBLEAREA_QUAD computes twice the area for each input quadrilateral
  610. //
  611. // Inputs:
  612. // V #V by dim list of mesh vertex positions
  613. // F #F by simplex_size list of mesh faces (must be quadrilaterals)
  614. // Outputs:
  615. // dblA #F list of quadrilateral double areas
  616. //)igl_Qu8mg5v7";
  617. const char *__doc_igl_min_quad_with_fixed_precompute = R"igl_Qu8mg5v7(// Known Bugs: rows of Aeq **should probably** be linearly independent.
  618. // During precomputation, the rows of a Aeq are checked via QR. But in case
  619. // they're not then resulting probably will no longer be sparse: it will be
  620. // slow.
  621. //
  622. // MIN_QUAD_WITH_FIXED Minimize quadratic energy
  623. //
  624. // 0.5*Z'*A*Z + Z'*B + C with
  625. //
  626. // constraints that Z(known) = Y, optionally also subject to the constraints
  627. // Aeq*Z = Beq
  628. //
  629. // Templates:
  630. // T should be a eigen matrix primitive type like int or double
  631. // Inputs:
  632. // A n by n matrix of quadratic coefficients
  633. // known list of indices to known rows in Z
  634. // Y list of fixed values corresponding to known rows in Z
  635. // Aeq m by n list of linear equality constraint coefficients
  636. // pd flag specifying whether A(unknown,unknown) is positive definite
  637. // Outputs:
  638. // data factorization struct with all necessary information to solve
  639. // using min_quad_with_fixed_solve
  640. // Returns true on success, false on error
  641. //
  642. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  643. // secs, igl/min_quad_with_fixed.h 7.1 secs
  644. //)igl_Qu8mg5v7";
  645. const char *__doc_igl_min_quad_with_fixed_solve = R"igl_Qu8mg5v7(// Solves a system previously factored using min_quad_with_fixed_precompute
  646. //
  647. // Template:
  648. // T type of sparse matrix (e.g. double)
  649. // DerivedY type of Y (e.g. derived from VectorXd or MatrixXd)
  650. // DerivedZ type of Z (e.g. derived from VectorXd or MatrixXd)
  651. // Inputs:
  652. // data factorization struct with all necessary precomputation to solve
  653. // B n by 1 column of linear coefficients
  654. // Y b by 1 list of constant fixed values
  655. // Beq m by 1 list of linear equality constraint constant values
  656. // Outputs:
  657. // Z n by cols solution
  658. // sol #unknowns+#lagrange by cols solution to linear system
  659. // Returns true on success, false on error)igl_Qu8mg5v7";
  660. const char *__doc_igl_min_quad_with_fixed = R"igl_Qu8mg5v7(See min_quad_with_fixed for the documentation.)igl_Qu8mg5v7";
  661. const char *__doc_igl_writeMESH = R"igl_Qu8mg5v7(// save a tetrahedral volume mesh to a .mesh file
  662. //
  663. // Templates:
  664. // Scalar type for positions and vectors (will be cast as double)
  665. // Index type for indices (will be cast to int)
  666. // Input:
  667. // mesh_file_name path of .mesh file
  668. // V double matrix of vertex positions #V by 3
  669. // T #T list of tet indices into vertex positions
  670. // F #F list of face indices into vertex positions
  671. //
  672. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  673. const char *__doc_igl_unique = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X)
  674. //
  675. // Templates:
  676. // T comparable type T
  677. // Inputs:
  678. // A #A vector of type T
  679. // Outputs:
  680. // C #C vector of unique entries in A
  681. // IA #C index vector so that C = A(IA);
  682. // IC #A index vector so that A = C(IC);)igl_Qu8mg5v7";
  683. const char *__doc_igl_unique_rows = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X,'rows')
  684. //
  685. // Templates:
  686. // DerivedA derived scalar type, e.g. MatrixXi or MatrixXd
  687. // DerivedIA derived integer type, e.g. MatrixXi
  688. // DerivedIC derived integer type, e.g. MatrixXi
  689. // Inputs:
  690. // A m by n matrix whose entries are to unique'd according to rows
  691. // Outputs:
  692. // C #C vector of unique rows in A
  693. // IA #C index vector so that C = A(IA,:);
  694. // IC #A index vector so that A = C(IC,:);)igl_Qu8mg5v7";
  695. const char *__doc_igl_arap_precomputation = R"igl_Qu8mg5v7(// Compute necessary information to start using an ARAP deformation
  696. //
  697. // Inputs:
  698. // V #V by dim list of mesh positions
  699. // F #F by simplex-size list of triangle|tet indices into V
  700. // dim dimension being used at solve time. For deformation usually dim =
  701. // V.cols(), for surface parameterization V.cols() = 3 and dim = 2
  702. // b #b list of "boundary" fixed vertex indices into V
  703. // Outputs:
  704. // data struct containing necessary precomputation)igl_Qu8mg5v7";
  705. const char *__doc_igl_arap_solve = R"igl_Qu8mg5v7(// Inputs:
  706. // bc #b by dim list of boundary conditions
  707. // data struct containing necessary precomputation and parameters
  708. // U #V by dim initial guess)igl_Qu8mg5v7";
  709. const char *__doc_igl_cross_field_missmatch = R"igl_Qu8mg5v7(// Inputs:
  710. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  711. // F #F by 3 eigen Matrix of face (quad) indices
  712. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  713. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  714. // isCombed boolean, specifying whether the field is combed (i.e. matching has been precomputed.
  715. // If not, the field is combed first.
  716. // Output:
  717. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  718. // across all face edges
  719. //)igl_Qu8mg5v7";
  720. const char *__doc_igl_grad = R"igl_Qu8mg5v7(// Gradient of a scalar function defined on piecewise linear elements (mesh)
  721. // is constant on each triangle i,j,k:
  722. // grad(Xijk) = (Xj-Xi) * (Vi - Vk)^R90 / 2A + (Xk-Xi) * (Vj - Vi)^R90 / 2A
  723. // where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
  724. // i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
  725. // 90 degrees
  726. //)igl_Qu8mg5v7";
  727. const char *__doc_igl_slice_into = R"igl_Qu8mg5v7(// Act like the matlab Y(row_indices,col_indices) = X
  728. //
  729. // Inputs:
  730. // X xm by xn rhs matrix
  731. // R list of row indices
  732. // C list of column indices
  733. // Y ym by yn lhs matrix
  734. // Output:
  735. // Y ym by yn lhs matrix, same as input but Y(R,C) = X)igl_Qu8mg5v7";
  736. const char *__doc_igl_slice_tets = R"igl_Qu8mg5v7(// SLICE_TETS Slice through a tet mesh (V,T) along a given plane (via its
  737. // implicit equation).
  738. //
  739. // Inputs:
  740. // V #V by 3 list of tet mesh vertices
  741. // T #T by 4 list of tet indices into V
  742. // plane list of 4 coefficients in the plane equation: [x y z 1]'*plane = 0
  743. // Optional:
  744. // 'Manifold' followed by whether to stitch together triangles into a
  745. // manifold mesh {true}: results in more compact U but slightly slower.
  746. // Outputs:
  747. // U #U by 3 list of triangle mesh vertices along slice
  748. // G #G by 3 list of triangles indices into U
  749. // J #G list of indices into T revealing from which tet each faces comes
  750. // BC #U by #V list of barycentric coordinates (or more generally: linear
  751. // interpolation coordinates) so that U = BC*V
  752. // )igl_Qu8mg5v7";
  753. const char *__doc_igl_n_polyvector = R"igl_Qu8mg5v7(// Inputs:
  754. // v0, v1 the two #3 by 1 vectors
  755. // normalized boolean, if false, then the vectors are normalized prior to the calculation
  756. // Output:
  757. // 3 by 3 rotation matrix that takes v0 to v1
  758. //)igl_Qu8mg5v7";
  759. const char *__doc_igl_harmonic = R"igl_Qu8mg5v7(// Compute k-harmonic weight functions "coordinates".
  760. //
  761. //
  762. // Inputs:
  763. // V #V by dim vertex positions
  764. // F #F by simplex-size list of element indices
  765. // b #b boundary indices into V
  766. // bc #b by #W list of boundary values
  767. // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
  768. // Outputs:
  769. // W #V by #W list of weights
  770. //)igl_Qu8mg5v7";
  771. const char *__doc_igl_boundary_loop = R"igl_Qu8mg5v7(// Compute list of ordered boundary loops for a manifold mesh.
  772. //
  773. // Templates:
  774. // Index index type
  775. // Inputs:
  776. // F #V by dim list of mesh faces
  777. // Outputs:
  778. // L list of loops where L[i] = ordered list of boundary vertices in loop i
  779. //)igl_Qu8mg5v7";
  780. const char *__doc_igl_polar_svd = R"igl_Qu8mg5v7(// Computes the polar decomposition (R,T) of a matrix A using SVD singular
  781. // value decomposition
  782. //
  783. // Inputs:
  784. // A 3 by 3 matrix to be decomposed
  785. // Outputs:
  786. // R 3 by 3 rotation matrix part of decomposition (**always rotataion**)
  787. // T 3 by 3 stretch matrix part of decomposition
  788. // U 3 by 3 left-singular vectors
  789. // S 3 by 1 singular values
  790. // V 3 by 3 right-singular vectors
  791. //
  792. //)igl_Qu8mg5v7";
  793. const char *__doc_igl_comb_cross_field = R"igl_Qu8mg5v7(// Inputs:
  794. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  795. // F #F by 4 eigen Matrix of face (quad) indices
  796. // PD1in #F by 3 eigen Matrix of the first per face cross field vector
  797. // PD2in #F by 3 eigen Matrix of the second per face cross field vector
  798. // Output:
  799. // PD1out #F by 3 eigen Matrix of the first combed cross field vector
  800. // PD2out #F by 3 eigen Matrix of the second combed cross field vector
  801. //)igl_Qu8mg5v7";
  802. const char *__doc_igl_invert_diag = R"igl_Qu8mg5v7(// Templates:
  803. // T should be a eigen sparse matrix primitive type like int or double
  804. // Inputs:
  805. // X an m by n sparse matrix
  806. // Outputs:
  807. // Y an m by n sparse matrix)igl_Qu8mg5v7";
  808. const char *__doc_igl_readMESH = R"igl_Qu8mg5v7(// load a tetrahedral volume mesh from a .mesh file
  809. //
  810. // Templates:
  811. // Scalar type for positions and vectors (will be read as double and cast
  812. // to Scalar)
  813. // Index type for indices (will be read as int and cast to Index)
  814. // Input:
  815. // mesh_file_name path of .mesh file
  816. // Outputs:
  817. // V double matrix of vertex positions #V by 3
  818. // T #T list of tet indices into vertex positions
  819. // F #F list of face indices into vertex positions
  820. //
  821. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  822. const char *__doc_igl_copyleft_comiso_miq = R"igl_Qu8mg5v7(// Inputs:
  823. // V #V by 3 list of mesh vertex 3D positions
  824. // F #F by 3 list of faces indices in V
  825. // PD1 #V by 3 first line of the Jacobian per triangle
  826. // PD2 #V by 3 second line of the Jacobian per triangle
  827. // (optional, if empty it will be a vector in the tangent plane orthogonal to PD1)
  828. // scale global scaling for the gradient (controls the quads resolution)
  829. // stiffness weight for the stiffness iterations
  830. // direct_round greedily round all integer variables at once (greatly improves optimization speed but lowers quality)
  831. // iter stiffness iterations (0 = no stiffness)
  832. // local_iter number of local iterations for the integer rounding
  833. // do_round enables the integer rounding (disabling it could be useful for debugging)
  834. // round_vertices id of additional vertices that should be snapped to integer coordinates
  835. // hard_features #H by 2 list of pairs of vertices that belongs to edges that should be snapped to integer coordinates
  836. //
  837. // Output:
  838. // UV #UV by 2 list of vertices in 2D
  839. // FUV #FUV by 3 list of face indices in UV
  840. //
  841. // TODO: rename the parameters name in the cpp consistenly
  842. // improve the handling of hard_features, right now it might fail in difficult cases)igl_Qu8mg5v7";
  843. const char *__doc_igl_copyleft_comiso_nrosy = R"igl_Qu8mg5v7(// Generate a N-RoSy field from a sparse set of constraints
  844. //
  845. // Inputs:
  846. // V #V by 3 list of mesh vertex coordinates
  847. // F #F by 3 list of mesh faces (must be triangles)
  848. // b #B by 1 list of constrained face indices
  849. // bc #B by 3 list of representative vectors for the constrained
  850. // faces
  851. // b_soft #S by 1 b for soft constraints
  852. // w_soft #S by 1 weight for the soft constraints (0-1)
  853. // bc_soft #S by 3 bc for soft constraints
  854. // N the degree of the N-RoSy vector field
  855. // soft the strenght of the soft contraints w.r.t. smoothness
  856. // (0 -> smoothness only, 1->constraints only)
  857. // Outputs:
  858. // R #F by 3 the representative vectors of the interpolated field
  859. // S #V by 1 the singularity index for each vertex (0 = regular))igl_Qu8mg5v7";