1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2017 Sebastian Koch <s.koch@tu-berlin.de> and Daniele Panozzo <daniele.panozzo@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- const char *__doc_igl_active_set = R"igl_Qu8mg5v7(// Known Bugs: rows of [Aeq;Aieq] **must** be linearly independent. Should be
- // using QR decomposition otherwise:
- // http://www.okstate.edu/sas/v8/sashtml/ormp/chap5/sect32.htm
- //
- // ACTIVE_SET Minimize quadratic energy
- //
- // 0.5*Z'*A*Z + Z'*B + C with constraints
- //
- // that Z(known) = Y, optionally also subject to the constraints Aeq*Z = Beq,
- // and further optionally subject to the linear inequality constraints that
- // Aieq*Z <= Bieq and constant inequality constraints lx <= x <= ux
- //
- // Inputs:
- // A n by n matrix of quadratic coefficients
- // B n by 1 column of linear coefficients
- // known list of indices to known rows in Z
- // Y list of fixed values corresponding to known rows in Z
- // Aeq meq by n list of linear equality constraint coefficients
- // Beq meq by 1 list of linear equality constraint constant values
- // Aieq mieq by n list of linear inequality constraint coefficients
- // Bieq mieq by 1 list of linear inequality constraint constant values
- // lx n by 1 list of lower bounds [] implies -Inf
- // ux n by 1 list of upper bounds [] implies Inf
- // params struct of additional parameters (see below)
- // Z if not empty, is taken to be an n by 1 list of initial guess values
- // (see output)
- // Outputs:
- // Z n by 1 list of solution values
- // Returns true on success, false on error
- //
- // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
- // secs, igl/min_quad_with_fixed.h 7.1 secs
- //)igl_Qu8mg5v7";
- const char *__doc_igl_adjacency_list = R"igl_Qu8mg5v7(// Constructs the graph adjacency list of a given mesh (V,F)
- // Templates:
- // T should be a eigen sparse matrix primitive type like int or double
- // Inputs:
- // F #F by dim list of mesh faces (must be triangles)
- // sorted flag that indicates if the list should be sorted counter-clockwise
- // Outputs:
- // A vector<vector<T> > containing at row i the adjacent vertices of vertex i
- //
- // Example:
- // // Mesh in (V,F)
- // vector<vector<double> > A;
- // adjacency_list(F,A);
- //
- // See also: edges, cotmatrix, diag)igl_Qu8mg5v7";
- const char *__doc_igl_arap_precomputation = R"igl_Qu8mg5v7(// Compute necessary information to start using an ARAP deformation
- //
- // Inputs:
- // V #V by dim list of mesh positions
- // F #F by simplex-size list of triangle|tet indices into V
- // dim dimension being used at solve time. For deformation usually dim =
- // V.cols(), for surface parameterization V.cols() = 3 and dim = 2
- // b #b list of "boundary" fixed vertex indices into V
- // Outputs:
- // data struct containing necessary precomputation)igl_Qu8mg5v7";
- const char *__doc_igl_arap_solve = R"igl_Qu8mg5v7(// Inputs:
- // bc #b by dim list of boundary conditions
- // data struct containing necessary precomputation and parameters
- // U #V by dim initial guess)igl_Qu8mg5v7";
- const char *__doc_igl_avg_edge_length = R"igl_Qu8mg5v7(// Compute the average edge length for the given triangle mesh
- // Templates:
- // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
- // DerivedF derived from face indices matrix type: i.e. MatrixXi
- // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
- // Inputs:
- // V eigen matrix #V by 3
- // F #F by simplex-size list of mesh faces (must be simplex)
- // Outputs:
- // l average edge length
- //
- // See also: adjacency_matrix)igl_Qu8mg5v7";
- const char *__doc_igl_barycenter = R"igl_Qu8mg5v7(// Computes the barycenter of every simplex
- //
- // Inputs:
- // V #V x dim matrix of vertex coordinates
- // F #F x simplex_size matrix of indices of simplex corners into V
- // Output:
- // BC #F x dim matrix of 3d vertices
- //)igl_Qu8mg5v7";
- const char *__doc_igl_barycentric_coordinates = R"igl_Qu8mg5v7(// Compute barycentric coordinates in a tet
- //
- // Inputs:
- // P #P by 3 Query points in 3d
- // A #P by 3 Tet corners in 3d
- // B #P by 3 Tet corners in 3d
- // C #P by 3 Tet corners in 3d
- // D #P by 3 Tet corners in 3d
- // Outputs:
- // L #P by 4 list of barycentric coordinates
- // )igl_Qu8mg5v7";
- const char *__doc_igl_barycentric_to_global = R"igl_Qu8mg5v7(// Converts barycentric coordinates in the embree form to 3D coordinates
- // Embree stores barycentric coordinates as triples: fid, bc1, bc2
- // fid is the id of a face, bc1 is the displacement of the point wrt the
- // first vertex v0 and the edge v1-v0. Similarly, bc2 is the displacement
- // wrt v2-v0.
- //
- // Input:
- // V: #Vx3 Vertices of the mesh
- // F: #Fxe Faces of the mesh
- // bc: #Xx3 Barycentric coordinates, one row per point
- //
- // Output:
- // #X: #Xx3 3D coordinates of all points in bc)igl_Qu8mg5v7";
- const char *__doc_igl_bbw = R"igl_Qu8mg5v7(// Compute Bounded Biharmonic Weights on a given domain (V,Ele) with a given
- // set of boundary conditions
- //
- // Templates
- // DerivedV derived type of eigen matrix for V (e.g. MatrixXd)
- // DerivedF derived type of eigen matrix for F (e.g. MatrixXi)
- // Derivedb derived type of eigen matrix for b (e.g. VectorXi)
- // Derivedbc derived type of eigen matrix for bc (e.g. MatrixXd)
- // DerivedW derived type of eigen matrix for W (e.g. MatrixXd)
- // Inputs:
- // V #V by dim vertex positions
- // Ele #Elements by simplex-size list of element indices
- // b #b boundary indices into V
- // bc #b by #W list of boundary values
- // data object containing options, initial guess --> solution and results
- // Outputs:
- // W #V by #W list of *unnormalized* weights to normalize use
- // igl::normalize_row_sums(W,W);
- // Returns true on success, false on failure)igl_Qu8mg5v7";
- const char *__doc_igl_boundary_conditions = R"igl_Qu8mg5v7(// Compute boundary conditions for automatic weights computation. This
- // function expects that the given mesh (V,Ele) has sufficient samples
- // (vertices) exactly at point handle locations and exactly along bone and
- // cage edges.
- //
- // Inputs:
- // V #V by dim list of domain vertices
- // Ele #Ele by simplex-size list of simplex indices
- // C #C by dim list of handle positions
- // P #P by 1 list of point handle indices into C
- // BE #BE by 2 list of bone edge indices into C
- // CE #CE by 2 list of cage edge indices into *P*
- // Outputs:
- // b #b list of boundary indices (indices into V of vertices which have
- // known, fixed values)
- // bc #b by #weights list of known/fixed values for boundary vertices
- // (notice the #b != #weights in general because #b will include all the
- // intermediary samples along each bone, etc.. The ordering of the
- // weights corresponds to [P;BE]
- // Returns false if boundary conditions are suspicious:
- // P and BE are empty
- // bc is empty
- // some column of bc doesn't have a 0 (assuming bc has >1 columns)
- // some column of bc doesn't have a 1 (assuming bc has >1 columns))igl_Qu8mg5v7";
- const char *__doc_igl_boundary_facets = R"igl_Qu8mg5v7(// BOUNDARY_FACETS Determine boundary faces (edges) of tetrahedra (triangles)
- // stored in T (analogous to qptoolbox's `outline` and `boundary_faces`).
- //
- // Templates:
- // IntegerT integer-value: e.g. int
- // IntegerF integer-value: e.g. int
- // Input:
- // T tetrahedron (triangle) index list, m by 4 (3), where m is the number of tetrahedra
- // Output:
- // F list of boundary faces, n by 3 (2), where n is the number of boundary faces
- //
- //)igl_Qu8mg5v7";
- const char *__doc_igl_boundary_loop = R"igl_Qu8mg5v7(// Compute list of ordered boundary loops for a manifold mesh.
- //
- // Templates:
- // Index index type
- // Inputs:
- // F #V by dim list of mesh faces
- // Outputs:
- // L list of loops where L[i] = ordered list of boundary vertices in loop i
- //)igl_Qu8mg5v7";
- const char *__doc_igl_cat = R"igl_Qu8mg5v7(// Perform concatenation of a two matrices along a single dimension
- // If dim == 1, then C = [A;B]. If dim == 2 then C = [A B]
- //
- // Template:
- // Scalar scalar data type for sparse matrices like double or int
- // Mat matrix type for all matrices (e.g. MatrixXd, SparseMatrix)
- // MatC matrix type for output matrix (e.g. MatrixXd) needs to support
- // resize
- // Inputs:
- // A first input matrix
- // B second input matrix
- // dim dimension along which to concatenate, 1 or 2
- // Outputs:
- // C output matrix
- // )igl_Qu8mg5v7";
- const char *__doc_igl_collapse_edge = R"igl_Qu8mg5v7(See collapse_edge for the documentation.)igl_Qu8mg5v7";
- const char *__doc_igl_colon = R"igl_Qu8mg5v7(// Colon operator like matlab's colon operator. Enumerats values between low
- // and hi with step step.
- // Templates:
- // L should be a eigen matrix primitive type like int or double
- // S should be a eigen matrix primitive type like int or double
- // H should be a eigen matrix primitive type like int or double
- // T should be a eigen matrix primitive type like int or double
- // Inputs:
- // low starting value if step is valid then this is *always* the first
- // element of I
- // step step difference between sequential elements returned in I,
- // remember this will be cast to template T at compile time. If low<hi
- // then step must be positive. If low>hi then step must be negative.
- // Otherwise I will be set to empty.
- // hi ending value, if (hi-low)%step is zero then this will be the last
- // element in I. If step is positive there will be no elements greater
- // than hi, vice versa if hi<low
- // Output:
- // I list of values from low to hi with step size step)igl_Qu8mg5v7";
- const char *__doc_igl_column_to_quats = R"igl_Qu8mg5v7(// "Columnize" a list of quaternions (q1x,q1y,q1z,q1w,q2x,q2y,q2z,q2w,...)
- //
- // Inputs:
- // Q n*4-long list of coefficients
- // Outputs:
- // vQ n-long list of quaternions
- // Returns false if n%4!=0)igl_Qu8mg5v7";
- const char *__doc_igl_comb_cross_field = R"igl_Qu8mg5v7(// Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 4 eigen Matrix of face (quad) indices
- // PD1in #F by 3 eigen Matrix of the first per face cross field vector
- // PD2in #F by 3 eigen Matrix of the second per face cross field vector
- // Output:
- // PD1out #F by 3 eigen Matrix of the first combed cross field vector
- // PD2out #F by 3 eigen Matrix of the second combed cross field vector
- //)igl_Qu8mg5v7";
- const char *__doc_igl_comb_frame_field = R"igl_Qu8mg5v7(// Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 4 eigen Matrix of face (quad) indices
- // PD1 #F by 3 eigen Matrix of the first per face cross field vector
- // PD2 #F by 3 eigen Matrix of the second per face cross field vector
- // BIS1_combed #F by 3 eigen Matrix of the first combed bisector field vector
- // BIS2_combed #F by 3 eigen Matrix of the second combed bisector field vector
- // Output:
- // PD1_combed #F by 3 eigen Matrix of the first combed cross field vector
- // PD2_combed #F by 3 eigen Matrix of the second combed cross field vector
- //)igl_Qu8mg5v7";
- const char *__doc_igl_compute_frame_field_bisectors = R"igl_Qu8mg5v7(// Compute bisectors of a frame field defined on mesh faces
- // Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 3 eigen Matrix of face (triangle) indices
- // B1 #F by 3 eigen Matrix of face (triangle) base vector 1
- // B2 #F by 3 eigen Matrix of face (triangle) base vector 2
- // PD1 #F by 3 eigen Matrix of the first per face frame field vector
- // PD2 #F by 3 eigen Matrix of the second per face frame field vector
- // Output:
- // BIS1 #F by 3 eigen Matrix of the first per face frame field bisector
- // BIS2 #F by 3 eigen Matrix of the second per face frame field bisector
- //)igl_Qu8mg5v7";
- const char *__doc_igl_copyleft_cgal_mesh_boolean = R"igl_Qu8mg5v7(// MESH_BOOLEAN Compute boolean csg operations on "solid", consistently
- // oriented meshes.
- //
- // Inputs:
- // VA #VA by 3 list of vertex positions of first mesh
- // FA #FA by 3 list of triangle indices into VA
- // VB #VB by 3 list of vertex positions of second mesh
- // FB #FB by 3 list of triangle indices into VB
- // type type of boolean operation
- // Outputs:
- // VC #VC by 3 list of vertex positions of boolean result mesh
- // FC #FC by 3 list of triangle indices into VC
- // J #FC list of indices into [FA;FA.rows()+FB] revealing "birth" facet
- // Returns true if inputs induce a piecewise constant winding number
- // field and type is valid
- //
- // See also: mesh_boolean_cork, intersect_other,
- // remesh_self_intersections)igl_Qu8mg5v7";
- const char *__doc_igl_copyleft_cgal_remesh_self_intersections = R"igl_Qu8mg5v7(// Given a triangle mesh (V,F) compute a new mesh (VV,FF) which is the same
- // as (V,F) except that any self-intersecting triangles in (V,F) have been
- // subdivided (new vertices and face created) so that the self-intersection
- // contour lies exactly on edges in (VV,FF). New vertices will appear in
- // original faces or on original edges. New vertices on edges are "merged"
- // only across original faces sharing that edge. This means that if the input
- // triangle mesh is a closed manifold the output will be too.
- //
- // Inputs:
- // V #V by 3 list of vertex positions
- // F #F by 3 list of triangle indices into V
- // params struct of optional parameters
- // Outputs:
- // VV #VV by 3 list of vertex positions
- // FF #FF by 3 list of triangle indices into VV
- // IF #intersecting face pairs by 2 list of intersecting face pairs,
- // indexing F
- // J #FF list of indices into F denoting birth triangle
- // IM #VV list of indices into VV of unique vertices.
- //
- // Known bugs: If an existing edge in (V,F) lies exactly on another face then
- // any resulting additional vertices along that edge may not get properly
- // connected so that the output mesh has the same global topology. This is
- // because
- //
- // Example:
- // // resolve intersections
- // igl::copyleft::cgal::remesh_self_intersections(V,F,params,VV,FF,IF,J,IM);
- // // _apply_ duplicate vertex mapping IM to FF
- // for_each(FF.data(),FF.data()+FF.size(),[&IM](int & a){a=IM(a);});
- // // remove any vertices now unreferenced after duplicate mapping.
- // igl::remove_unreferenced(VV,FF,SV,SF,UIM);
- // // Now (SV,SF) is ready to extract outer hull
- // igl::copyleft::cgal::outer_hull(SV,SF,G,J,flip);
- //)igl_Qu8mg5v7";
- const char *__doc_igl_copyleft_comiso_miq = R"igl_Qu8mg5v7(// Inputs:
- // V #V by 3 list of mesh vertex 3D positions
- // F #F by 3 list of faces indices in V
- // PD1 #V by 3 first line of the Jacobian per triangle
- // PD2 #V by 3 second line of the Jacobian per triangle
- // (optional, if empty it will be a vector in the tangent plane orthogonal to PD1)
- // scale global scaling for the gradient (controls the quads resolution)
- // stiffness weight for the stiffness iterations
- // direct_round greedily round all integer variables at once (greatly improves optimization speed but lowers quality)
- // iter stiffness iterations (0 = no stiffness)
- // local_iter number of local iterations for the integer rounding
- // do_round enables the integer rounding (disabling it could be useful for debugging)
- // round_vertices id of additional vertices that should be snapped to integer coordinates
- // hard_features #H by 2 list of pairs of vertices that belongs to edges that should be snapped to integer coordinates
- //
- // Output:
- // UV #UV by 2 list of vertices in 2D
- // FUV #FUV by 3 list of face indices in UV
- //
- // TODO: rename the parameters name in the cpp consistently
- // improve the handling of hard_features, right now it might fail in difficult cases)igl_Qu8mg5v7";
- const char *__doc_igl_copyleft_comiso_nrosy = R"igl_Qu8mg5v7(// Generate a N-RoSy field from a sparse set of constraints
- //
- // Inputs:
- // V #V by 3 list of mesh vertex coordinates
- // F #F by 3 list of mesh faces (must be triangles)
- // b #B by 1 list of constrained face indices
- // bc #B by 3 list of representative vectors for the constrained
- // faces
- // b_soft #S by 1 b for soft constraints
- // w_soft #S by 1 weight for the soft constraints (0-1)
- // bc_soft #S by 3 bc for soft constraints
- // N the degree of the N-RoSy vector field
- // soft the strength of the soft constraints w.r.t. smoothness
- // (0 -> smoothness only, 1->constraints only)
- // Outputs:
- // R #F by 3 the representative vectors of the interpolated field
- // S #V by 1 the singularity index for each vertex (0 = regular))igl_Qu8mg5v7";
- const char *__doc_igl_copyleft_marching_cubes = R"igl_Qu8mg5v7(// marching_cubes( values, points, x_res, y_res, z_res, vertices, faces )
- //
- // performs marching cubes reconstruction on the grid defined by values, and
- // points, and generates vertices and faces
- //
- // Input:
- // values #number_of_grid_points x 1 array -- the scalar values of an
- // implicit function defined on the grid points (<0 in the inside of the
- // surface, 0 on the border, >0 outside)
- // points #number_of_grid_points x 3 array -- 3-D positions of the grid
- // points, ordered in x,y,z order:
- // points[index] = the point at (x,y,z) where :
- // x = (index % (xres -1),
- // y = (index / (xres-1)) %(yres-1),
- // z = index / (xres -1) / (yres -1) ).
- // where x,y,z index x, y, z dimensions
- // i.e. index = x + y*xres + z*xres*yres
- // xres resolutions of the grid in x dimension
- // yres resolutions of the grid in y dimension
- // zres resolutions of the grid in z dimension
- // Output:
- // vertices #V by 3 list of mesh vertex positions
- // faces #F by 3 list of mesh triangle indices
- //)igl_Qu8mg5v7";
- const char *__doc_igl_copyleft_swept_volume = R"igl_Qu8mg5v7(// Compute the surface of the swept volume of a solid object with surface
- // (V,F) mesh under going rigid motion.
- //
- // Inputs:
- // V #V by 3 list of mesh positions in reference pose
- // F #F by 3 list of mesh indices into V
- // transform function handle so that transform(t) returns the rigid
- // transformation at time t∈[0,1]
- // steps number of time steps: steps=3 --> t∈{0,0.5,1}
- // grid_res number of grid cells on the longest side containing the
- // motion (isolevel+1 cells will also be added on each side as padding)
- // isolevel distance level to be contoured as swept volume
- // Outputs:
- // SV #SV by 3 list of mesh positions of the swept surface
- // SF #SF by 3 list of mesh faces into SV)igl_Qu8mg5v7";
- const char *__doc_igl_copyleft_tetgen_tetrahedralize = R"igl_Qu8mg5v7(// Mesh the interior of a surface mesh (V,F) using tetgen
- //
- // Inputs:
- // V #V by 3 vertex position list
- // F #F list of polygon face indices into V (0-indexed)
- // switches string of tetgen options (See tetgen documentation) e.g.
- // "pq1.414a0.01" tries to mesh the interior of a given surface with
- // quality and area constraints
- // "" will mesh the convex hull constrained to pass through V (ignores F)
- // Outputs:
- // TV #V by 3 vertex position list
- // TT #T by 4 list of tet face indices
- // TF #F by 3 list of triangle face indices
- // Returns status:
- // 0 success
- // 1 tetgen threw exception
- // 2 tetgen did not crash but could not create any tets (probably there are
- // holes, duplicate faces etc.)
- // -1 other error)igl_Qu8mg5v7";
- const char *__doc_igl_cotmatrix = R"igl_Qu8mg5v7(// Constructs the cotangent stiffness matrix (discrete laplacian) for a given
- // mesh (V,F).
- //
- // Templates:
- // DerivedV derived type of eigen matrix for V (e.g. derived from
- // MatrixXd)
- // DerivedF derived type of eigen matrix for F (e.g. derived from
- // MatrixXi)
- // Scalar scalar type for eigen sparse matrix (e.g. double)
- // Inputs:
- // V #V by dim list of mesh vertex positions
- // F #F by simplex_size list of mesh faces (must be triangles)
- // Outputs:
- // L #V by #V cotangent matrix, each row i corresponding to V(i,:)
- //
- // See also: adjacency_matrix
- //
- // Note: This Laplacian uses the convention that diagonal entries are
- // **minus** the sum of off-diagonal entries. The diagonal entries are
- // therefore in general negative and the matrix is **negative** semi-definite
- // (immediately, -L is **positive** semi-definite)
- //)igl_Qu8mg5v7";
- const char *__doc_igl_covariance_scatter_matrix = R"igl_Qu8mg5v7(// Construct the covariance scatter matrix for a given arap energy
- // Inputs:
- // V #V by Vdim list of initial domain positions
- // F #F by 3 list of triangle indices into V
- // energy ARAPEnergyType enum value defining which energy is being used.
- // See ARAPEnergyType.h for valid options and explanations.
- // Outputs:
- // CSM dim*#V/#F by dim*#V sparse matrix containing special laplacians along
- // the diagonal so that when multiplied by V gives covariance matrix
- // elements, can be used to speed up covariance matrix computation)igl_Qu8mg5v7";
- const char *__doc_igl_cross_field_mismatch = R"igl_Qu8mg5v7(// Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 3 eigen Matrix of face (quad) indices
- // PD1 #F by 3 eigen Matrix of the first per face cross field vector
- // PD2 #F by 3 eigen Matrix of the second per face cross field vector
- // isCombed boolean, specifying whether the field is combed (i.e. matching has been precomputed.
- // If not, the field is combed first.
- // Output:
- // Handle_MMatch #F by 3 eigen Matrix containing the integer mismatch of the cross field
- // across all face edges
- //)igl_Qu8mg5v7";
- const char *__doc_igl_cut_mesh_from_singularities = R"igl_Qu8mg5v7(// Given a mesh (V,F) and the integer mismatch of a cross field per edge
- // (MMatch), finds the cut_graph connecting the singularities (seams) and the
- // degree of the singularities singularity_index
- //
- // Input:
- // V #V by 3 list of mesh vertex positions
- // F #F by 3 list of faces
- // MMatch #F by 3 list of per corner integer mismatch
- // Outputs:
- // seams #F by 3 list of per corner booleans that denotes if an edge is a
- // seam or not
- //)igl_Qu8mg5v7";
- const char *__doc_igl_deform_skeleton = R"igl_Qu8mg5v7(// Deform a skeleton.
- //
- // Inputs:
- // C #C by 3 list of joint positions
- // BE #BE by 2 list of bone edge indices
- // vA #BE list of bone transformations
- // Outputs
- // CT #BE*2 by 3 list of deformed joint positions
- // BET #BE by 2 list of bone edge indices (maintains order)
- //)igl_Qu8mg5v7";
- const char *__doc_igl_directed_edge_orientations = R"igl_Qu8mg5v7(// Determine rotations that take each edge from the x-axis to its given rest
- // orientation.
- //
- // Inputs:
- // C #C by 3 list of edge vertex positions
- // E #E by 2 list of directed edges
- // Outputs:
- // Q #E list of quaternions
- //)igl_Qu8mg5v7";
- const char *__doc_igl_directed_edge_parents = R"igl_Qu8mg5v7(// Recover "parents" (preceding edges) in a tree given just directed edges.
- //
- // Inputs:
- // E #E by 2 list of directed edges
- // Outputs:
- // P #E list of parent indices into E (-1) means root
- //)igl_Qu8mg5v7";
- const char *__doc_igl_doublearea = R"igl_Qu8mg5v7(// DOUBLEAREA computes twice the area for each input triangle[quad]
- //
- // Templates:
- // DerivedV derived type of eigen matrix for V (e.g. derived from
- // MatrixXd)
- // DerivedF derived type of eigen matrix for F (e.g. derived from
- // MatrixXi)
- // DeriveddblA derived type of eigen matrix for dblA (e.g. derived from
- // MatrixXd)
- // Inputs:
- // V #V by dim list of mesh vertex positions
- // F #F by simplex_size list of mesh faces (must be triangles or quads)
- // Outputs:
- // dblA #F list of triangle[quad] double areas (SIGNED only for 2D input)
- //
- // Known bug: For dim==3 complexity is O(#V + #F)!! Not just O(#F). This is a big deal
- // if you have 1million unreferenced vertices and 1 face)igl_Qu8mg5v7";
- const char *__doc_igl_doublearea_single = R"igl_Qu8mg5v7(// Single triangle in 2D!
- //
- // This should handle streams of corners not just single corners)igl_Qu8mg5v7";
- const char *__doc_igl_doublearea_quad = R"igl_Qu8mg5v7(// DOUBLEAREA_QUAD computes twice the area for each input quadrilateral
- //
- // Inputs:
- // V #V by dim list of mesh vertex positions
- // F #F by simplex_size list of mesh faces (must be quadrilaterals)
- // Outputs:
- // dblA #F list of quadrilateral double areas
- //)igl_Qu8mg5v7";
- const char *__doc_igl_dqs = R"igl_Qu8mg5v7(// Dual quaternion skinning
- //
- // Inputs:
- // V #V by 3 list of rest positions
- // W #W by #C list of weights
- // vQ #C list of rotation quaternions
- // vT #C list of translation vectors
- // Outputs:
- // U #V by 3 list of new positions)igl_Qu8mg5v7";
- const char *__doc_igl_edge_lengths = R"igl_Qu8mg5v7(// Constructs a list of lengths of edges opposite each index in a face
- // (triangle/tet) list
- //
- // Templates:
- // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
- // DerivedF derived from face indices matrix type: i.e. MatrixXi
- // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
- // Inputs:
- // V eigen matrix #V by 3
- // F #F by 2 list of mesh edges
- // or
- // F #F by 3 list of mesh faces (must be triangles)
- // or
- // T #T by 4 list of mesh elements (must be tets)
- // Outputs:
- // L #F by {1|3|6} list of edge lengths
- // for edges, column of lengths
- // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
- // for tets, columns correspond to edges
- // [3 0],[3 1],[3 2],[1 2],[2 0],[0 1]
- //)igl_Qu8mg5v7";
- const char *__doc_igl_edge_topology = R"igl_Qu8mg5v7(// Initialize Edges and their topological relations (assumes an edge-manifold
- // mesh)
- //
- // Output:
- // EV : #Ex2, Stores the edge description as pair of indices to vertices
- // FE : #Fx3, Stores the Triangle-Edge relation
- // EF : #Ex2: Stores the Edge-Triangle relation
- //
- // TODO: This seems to be a inferior duplicate of edge_flaps.h:
- // - unused input parameter V
- // - roughly 2x slower than edge_flaps
- // - outputs less information: edge_flaps reveals corner opposite edge
- // - FE uses non-standard and ambiguous order: FE(f,c) is merely an edge
- // incident on corner c of face f. In contrast, edge_flaps's EMAP(f,c) reveals
- // the edge _opposite_ corner c of face f)igl_Qu8mg5v7";
- const char *__doc_igl_eigs = R"igl_Qu8mg5v7(See eigs for the documentation.)igl_Qu8mg5v7";
- const char *__doc_igl_embree_ambient_occlusion = R"igl_Qu8mg5v7(// Compute ambient occlusion per given point
- //
- // Inputs:
- // ei EmbreeIntersector containing (V,F)
- // P #P by 3 list of origin points
- // N #P by 3 list of origin normals
- // Outputs:
- // S #P list of ambient occlusion values between 1 (fully occluded) and
- // 0 (not occluded)
- //)igl_Qu8mg5v7";
- const char *__doc_igl_embree_line_mesh_intersection = R"igl_Qu8mg5v7(// Project the point cloud V_source onto the triangle mesh
- // V_target,F_target.
- // A ray is casted for every vertex in the direction specified by
- // N_source and its opposite.
- //
- // Input:
- // V_source: #Vx3 Vertices of the source mesh
- // N_source: #Vx3 Normals of the point cloud
- // V_target: #V2x3 Vertices of the target mesh
- // F_target: #F2x3 Faces of the target mesh
- //
- // Output:
- // #Vx3 matrix of baricentric coordinate. Each row corresponds to
- // a vertex of the projected mesh and it has the following format:
- // id b1 b2. id is the id of a face of the source mesh. b1 and b2 are
- // the barycentric coordinates wrt the first two edges of the triangle
- // To convert to standard global coordinates, see barycentric_to_global.h)igl_Qu8mg5v7";
- const char *__doc_igl_embree_reorient_facets_raycast = R"igl_Qu8mg5v7(// Orient each component (identified by C) of a mesh (V,F) using ambient
- // occlusion such that the front side is less occluded than back side, as
- // described in "A Simple Method for Correcting Facet Orientations in
- // Polygon Meshes Based on Ray Casting" [Takayama et al. 2014].
- //
- // Inputs:
- // V #V by 3 list of vertex positions
- // F #F by 3 list of triangle indices
- // rays_total Total number of rays that will be shot
- // rays_minimum Minimum number of rays that each patch should receive
- // facet_wise Decision made for each face independently, no use of patches
- // (i.e., each face is treated as a patch)
- // use_parity Use parity mode
- // is_verbose Verbose output to cout
- // Outputs:
- // I #F list of whether face has been flipped
- // C #F list of patch ID (output of bfs_orient > manifold patches))igl_Qu8mg5v7";
- const char *__doc_igl_exact_geodesic = R"igl_Qu8mg5v7(
- // Exact geodesic algorithm for triangular mesh with the implementation from https://code.google.com/archive/p/geodesic/,
- // and the algorithm first described by Mitchell, Mount and Papadimitriou in 1987
- //
- // Inputs:
- // V #V by 3 list of 3D vertex positions
- // F #F by 3 list of mesh faces
- // VS #VS by 1 vector specifying indices of source vertices
- // FS #FS by 1 vector specifying indices of source faces
- // VT #VT by 1 vector specifying indices of target vertices
- // FT #FT by 1 vector specifying indices of target faces
- // Output:
- // D #VT+#FT by 1 vector of geodesic distances of each target w.r.t. the nearest one in the source set
- //
- // Note:
- // Specifying a face as target/source means its center.
- //)igl_Qu8mg5v7";
- const char *__doc_igl_find_cross_field_singularities = R"igl_Qu8mg5v7(// Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 3 eigen Matrix of face (quad) indices
- // Handle_MMatch #F by 3 eigen Matrix containing the integer mismatch of the cross field
- // across all face edges
- // Output:
- // isSingularity #V by 1 boolean eigen Vector indicating the presence of a singularity on a vertex
- // singularityIndex #V by 1 integer eigen Vector containing the singularity indices
- //)igl_Qu8mg5v7";
- const char *__doc_igl_fit_rotations = R"igl_Qu8mg5v7(// Known issues: This seems to be implemented in Eigen/Geometry:
- // Eigen::umeyama
- //
- // FIT_ROTATIONS Given an input mesh and new positions find rotations for
- // every covariance matrix in a stack of covariance matrices
- //
- // Inputs:
- // S nr*dim by dim stack of covariance matrices
- // single_precision whether to use single precision (faster)
- // Outputs:
- // R dim by dim * nr list of rotations
- //)igl_Qu8mg5v7";
- const char *__doc_igl_fit_rotations_planar = R"igl_Qu8mg5v7(// FIT_ROTATIONS Given an input mesh and new positions find 2D rotations for
- // every vertex that best maps its one ring to the new one ring
- //
- // Inputs:
- // S nr*dim by dim stack of covariance matrices, third column and every
- // third row will be ignored
- // Outputs:
- // R dim by dim * nr list of rotations, third row and third column of each
- // rotation will just be identity
- //)igl_Qu8mg5v7";
- const char *__doc_igl_fit_rotations_SSE = R"igl_Qu8mg5v7(See fit_rotations_SSE for the documentation.)igl_Qu8mg5v7";
- const char *__doc_igl_floor = R"igl_Qu8mg5v7(// Floor a given matrix to nearest integers
- //
- // Inputs:
- // X m by n matrix of scalars
- // Outputs:
- // Y m by n matrix of floored integers)igl_Qu8mg5v7";
- const char *__doc_igl_forward_kinematics = R"igl_Qu8mg5v7(// Given a skeleton and a set of relative bone rotations compute absolute
- // rigid transformations for each bone.
- //
- // Inputs:
- // C #C by dim list of joint positions
- // BE #BE by 2 list of bone edge indices
- // P #BE list of parent indices into BE
- // dQ #BE list of relative rotations
- // dT #BE list of relative translations
- // Outputs:
- // vQ #BE list of absolute rotations
- // vT #BE list of absolute translations)igl_Qu8mg5v7";
- const char *__doc_igl_gaussian_curvature = R"igl_Qu8mg5v7(// Compute discrete local integral gaussian curvature (angle deficit, without
- // averaging by local area).
- //
- // Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 3 eigen Matrix of face (triangle) indices
- // Output:
- // K #V by 1 eigen Matrix of discrete gaussian curvature values
- //)igl_Qu8mg5v7";
- const char *__doc_igl_get_seconds = R"igl_Qu8mg5v7(// Return the current time in seconds since program start
- //
- // Example:
- // const auto & tictoc = []()
- // {
- // static double t_start = igl::get_seconds();
- // double diff = igl::get_seconds()-t_start;
- // t_start += diff;
- // return diff;
- // };
- // tictoc();
- // ... // part 1
- // cout<<"part 1: "<<tictoc()<<endl;
- // ... // part 2
- // cout<<"part 2: "<<tictoc()<<endl;
- // ... // etc)igl_Qu8mg5v7";
- const char *__doc_igl_grad = R"igl_Qu8mg5v7(// Gradient of a scalar function defined on piecewise linear elements (mesh)
- // is constant on each triangle [tetrahedron] i,j,k:
- // grad(Xijk) = (Xj-Xi) * (Vi - Vk)^R90 / 2A + (Xk-Xi) * (Vj - Vi)^R90 / 2A
- // where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
- // i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
- // 90 degrees
- //)igl_Qu8mg5v7";
- const char *__doc_igl_harmonic = R"igl_Qu8mg5v7(// Compute k-harmonic weight functions "coordinates".
- //
- //
- // Inputs:
- // V #V by dim vertex positions
- // F #F by simplex-size list of element indices
- // b #b boundary indices into V
- // bc #b by #W list of boundary values
- // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
- // Outputs:
- // W #V by #W list of weights
- //)igl_Qu8mg5v7";
- const char *__doc_igl_hsv_to_rgb = R"igl_Qu8mg5v7(// Convert RGB to HSV
- //
- // Inputs:
- // h hue value (degrees: [0,360])
- // s saturation value ([0,1])
- // v value value ([0,1])
- // Outputs:
- // r red value ([0,1])
- // g green value ([0,1])
- // b blue value ([0,1]))igl_Qu8mg5v7";
- const char *__doc_igl_internal_angles = R"igl_Qu8mg5v7(// Compute internal angles for a triangle mesh
- //
- // Inputs:
- // V #V by dim eigen Matrix of mesh vertex nD positions
- // F #F by poly-size eigen Matrix of face (triangle) indices
- // Output:
- // K #F by poly-size eigen Matrix of internal angles
- // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
- //
- // Known Issues:
- // if poly-size ≠ 3 then dim must equal 3.)igl_Qu8mg5v7";
- const char *__doc_igl_internal_angles_using_squared_edge_lengths = R"igl_Qu8mg5v7(// Inputs:
- // L_sq #F by 3 list of squared edge lengths
- // Output:
- // K #F by poly-size eigen Matrix of internal angles
- // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
- //
- // Note:
- // Usage of internal_angles_using_squared_edge_lengths is preferred to internal_angles_using_squared_edge_lengths)igl_Qu8mg5v7";
- const char *__doc_igl_internal_angles_using_edge_lengths = R"igl_Qu8mg5v7(// Inputs:
- // L #F by 3 list of edge lengths
- // Output:
- // K #F by poly-size eigen Matrix of internal angles
- // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
- //
- // Note:
- // Usage of internal_angles_using_squared_edge_lengths is preferred to internal_angles_using_squared_edge_lengths
- // This function is deprecated and probably will be removed in future versions)igl_Qu8mg5v7";
- const char *__doc_igl_invert_diag = R"igl_Qu8mg5v7(// Templates:
- // T should be a eigen sparse matrix primitive type like int or double
- // Inputs:
- // X an m by n sparse matrix
- // Outputs:
- // Y an m by n sparse matrix)igl_Qu8mg5v7";
- const char *__doc_igl_is_irregular_vertex = R"igl_Qu8mg5v7(// Determine if a vertex is irregular, i.e. it has more than 6 (triangles)
- // or 4 (quads) incident edges. Vertices on the boundary are ignored.
- //
- // Inputs:
- // V #V by dim list of vertex positions
- // F #F by 3[4] list of triangle[quads] indices
- // Returns #V vector of bools revealing whether vertices are singular
- //)igl_Qu8mg5v7";
- const char *__doc_igl_jet = R"igl_Qu8mg5v7(// JET like MATLAB's jet
- //
- // Inputs:
- // m number of colors
- // Outputs:
- // J m by list of RGB colors between 0 and 1
- //
- //#ifndef IGL_NO_EIGEN
- // void jet(const int m, Eigen::MatrixXd & J);
- //#endif
- // Wrapper for directly computing [r,g,b] values for a given factor f between
- // 0 and 1
- //
- // Inputs:
- // f factor determining color value as if 0 was min and 1 was max
- // Outputs:
- // r red value
- // g green value
- // b blue value)igl_Qu8mg5v7";
- const char *__doc_igl_lbs_matrix = R"igl_Qu8mg5v7(// LBS_MATRIX Linear blend skinning can be expressed by V' = M * T where V' is
- // a #V by dim matrix of deformed vertex positions (one vertex per row), M is a
- // #V by (dim+1)*#T (composed of weights and rest positions) and T is a
- // #T*(dim+1) by dim matrix of #T stacked transposed transformation matrices.
- // See equations (1) and (2) in "Fast Automatic Skinning Transformations"
- // [Jacobson et al 2012]
- //
- // Inputs:
- // V #V by dim list of rest positions
- // W #V+ by #T list of weights
- // Outputs:
- // M #V by #T*(dim+1)
- //
- // In MATLAB:
- // kron(ones(1,size(W,2)),[V ones(size(V,1),1)]).*kron(W,ones(1,size(V,2)+1)))igl_Qu8mg5v7";
- const char *__doc_igl_lbs_matrix_column = R"igl_Qu8mg5v7(// LBS_MATRIX construct a matrix that when multiplied against a column of
- // affine transformation entries computes new coordinates of the vertices
- //
- // I'm not sure it makes since that the result is stored as a sparse matrix.
- // The number of non-zeros per row *is* dependent on the number of mesh
- // vertices and handles.
- //
- // Inputs:
- // V #V by dim list of vertex rest positions
- // W #V by #handles list of correspondence weights
- // Output:
- // M #V * dim by #handles * dim * (dim+1) matrix such that
- // new_V(:) = LBS(V,W,A) = reshape(M * A,size(V)), where A is a column
- // vectors formed by the entries in each handle's dim by dim+1
- // transformation matrix. Specifcally, A =
- // reshape(permute(Astack,[3 1 2]),n*dim*(dim+1),1)
- // or A = [Lxx;Lyx;Lxy;Lyy;tx;ty], and likewise for other dim
- // if Astack(:,:,i) is the dim by (dim+1) transformation at handle i)igl_Qu8mg5v7";
- const char *__doc_igl_local_basis = R"igl_Qu8mg5v7(// Compute a local orthogonal reference system for each triangle in the given mesh
- // Templates:
- // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
- // DerivedF derived from face indices matrix type: i.e. MatrixXi
- // Inputs:
- // V eigen matrix #V by 3
- // F #F by 3 list of mesh faces (must be triangles)
- // Outputs:
- // B1 eigen matrix #F by 3, each vector is tangent to the triangle
- // B2 eigen matrix #F by 3, each vector is tangent to the triangle and perpendicular to B1
- // B3 eigen matrix #F by 3, normal of the triangle
- //
- // See also: adjacency_matrix)igl_Qu8mg5v7";
- const char *__doc_igl_lscm = R"igl_Qu8mg5v7(// Compute a Least-squares conformal map parametrization (equivalently
- // derived in "Intrinsic Parameterizations of Surface Meshes" [Desbrun et al.
- // 2002] and "Least Squares Conformal Maps for Automatic Texture Atlas
- // Generation" [Lévy et al. 2002]), though this implementation follows the
- // derivation in: "Spectral Conformal Parameterization" [Mullen et al. 2008]
- // (note, this does **not** implement the Eigen-decomposition based method in
- // [Mullen et al. 2008], which is not equivalent). Input should be a manifold
- // mesh (also no unreferenced vertices) and "boundary" (fixed vertices) `b`
- // should contain at least two vertices per connected component.
- //
- // Inputs:
- // V #V by 3 list of mesh vertex positions
- // F #F by 3 list of mesh faces (must be triangles)
- // b #b boundary indices into V
- // bc #b by 3 list of boundary values
- // Outputs:
- // UV #V by 2 list of 2D mesh vertex positions in UV space
- // Returns true only on solver success.
- //)igl_Qu8mg5v7";
- const char *__doc_igl_map_vertices_to_circle = R"igl_Qu8mg5v7(// Map the vertices whose indices are in a given boundary loop (bnd) on the
- // unit circle with spacing proportional to the original boundary edge
- // lengths.
- //
- // Inputs:
- // V #V by dim list of mesh vertex positions
- // b #W list of vertex ids
- // Outputs:
- // UV #W by 2 list of 2D position on the unit circle for the vertices in b)igl_Qu8mg5v7";
- const char *__doc_igl_massmatrix = R"igl_Qu8mg5v7(// Constructs the mass (area) matrix for a given mesh (V,F).
- //
- // Templates:
- // DerivedV derived type of eigen matrix for V (e.g. derived from
- // MatrixXd)
- // DerivedF derived type of eigen matrix for F (e.g. derived from
- // MatrixXi)
- // Scalar scalar type for eigen sparse matrix (e.g. double)
- // Inputs:
- // V #V by dim list of mesh vertex positions
- // F #F by simplex_size list of mesh faces (must be triangles)
- // type one of the following ints:
- // MASSMATRIX_TYPE_BARYCENTRIC barycentric
- // MASSMATRIX_TYPE_VORONOI voronoi-hybrid {default}
- // MASSMATRIX_TYPE_FULL full {not implemented}
- // Outputs:
- // M #V by #V mass matrix
- //
- // See also: adjacency_matrix
- //)igl_Qu8mg5v7";
- const char *__doc_igl_min_quad_with_fixed_precompute = R"igl_Qu8mg5v7(// Known Bugs: rows of Aeq **should probably** be linearly independent.
- // During precomputation, the rows of a Aeq are checked via QR. But in case
- // they're not then resulting probably will no longer be sparse: it will be
- // slow.
- //
- // MIN_QUAD_WITH_FIXED Minimize a quadratic energy of the form
- //
- // trace( 0.5*Z'*A*Z + Z'*B + constant )
- //
- // subject to
- //
- // Z(known,:) = Y, and
- // Aeq*Z = Beq
- //
- // Templates:
- // T should be a eigen matrix primitive type like int or double
- // Inputs:
- // A n by n matrix of quadratic coefficients
- // known list of indices to known rows in Z
- // Y list of fixed values corresponding to known rows in Z
- // Aeq m by n list of linear equality constraint coefficients
- // pd flag specifying whether A(unknown,unknown) is positive definite
- // Outputs:
- // data factorization struct with all necessary information to solve
- // using min_quad_with_fixed_solve
- // Returns true on success, false on error
- //
- // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
- // secs, igl/min_quad_with_fixed.h 7.1 secs
- //)igl_Qu8mg5v7";
- const char *__doc_igl_min_quad_with_fixed_solve = R"igl_Qu8mg5v7(// Solves a system previously factored using min_quad_with_fixed_precompute
- //
- // Template:
- // T type of sparse matrix (e.g. double)
- // DerivedY type of Y (e.g. derived from VectorXd or MatrixXd)
- // DerivedZ type of Z (e.g. derived from VectorXd or MatrixXd)
- // Inputs:
- // data factorization struct with all necessary precomputation to solve
- // B n by k column of linear coefficients
- // Y b by k list of constant fixed values
- // Beq m by k list of linear equality constraint constant values
- // Outputs:
- // Z n by k solution
- // sol #unknowns+#lagrange by k solution to linear system
- // Returns true on success, false on error)igl_Qu8mg5v7";
- const char *__doc_igl_min_quad_with_fixed = R"igl_Qu8mg5v7(See min_quad_with_fixed for the documentation.)igl_Qu8mg5v7";
- const char *__doc_igl_normalize_row_lengths = R"igl_Qu8mg5v7(// Obsolete: just use A.rowwise().normalize() or B=A.rowwise().normalized();
- //
- // Normalize the rows in A so that their lengths are each 1 and place the new
- // entries in B
- // Inputs:
- // A #rows by k input matrix
- // Outputs:
- // B #rows by k input matrix, can be the same as A)igl_Qu8mg5v7";
- const char *__doc_igl_normalize_row_sums = R"igl_Qu8mg5v7(// Normalize the rows in A so that their sums are each 1 and place the new
- // entries in B
- // Inputs:
- // A #rows by k input matrix
- // Outputs:
- // B #rows by k input matrix, can be the same as A
- //
- // Note: This is just calling an Eigen one-liner.)igl_Qu8mg5v7";
- const char *__doc_igl_parula = R"igl_Qu8mg5v7(// PARULA like MATLAB's parula
- //
- // Inputs:
- // m number of colors
- // Outputs:
- // J m by list of RGB colors between 0 and 1
- //
- // Wrapper for directly computing [r,g,b] values for a given factor f between
- // 0 and 1
- //
- // Inputs:
- // f factor determining color value as if 0 was min and 1 was max
- // Outputs:
- // r red value
- // g green value
- // b blue value)igl_Qu8mg5v7";
- const char *__doc_igl_per_corner_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
- // Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 3 eigne Matrix of face (triangle) indices
- // corner_threshold threshold in degrees on sharp angles
- // Output:
- // CN #F*3 by 3 eigen Matrix of mesh vertex 3D normals, where the normal
- // for corner F(i,j) is at CN(i*3+j,:) )igl_Qu8mg5v7";
- const char *__doc_igl_per_edge_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
- // Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 3 eigen Matrix of face (triangle) indices
- // weight weighting type
- // FN #F by 3 matrix of 3D face normals per face
- // Output:
- // N #2 by 3 matrix of mesh edge 3D normals per row
- // E #E by 2 matrix of edge indices per row
- // EMAP #E by 1 matrix of indices from all edges to E
- //)igl_Qu8mg5v7";
- const char *__doc_igl_per_face_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
- // Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 3 eigen Matrix of face (triangle) indices
- // Z 3 vector normal given to faces with degenerate normal.
- // Output:
- // N #F by 3 eigen Matrix of mesh face (triangle) 3D normals
- //
- // Example:
- // // Give degenerate faces (1/3,1/3,1/3)^0.5
- // per_face_normals(V,F,Vector3d(1,1,1).normalized(),N);)igl_Qu8mg5v7";
- const char *__doc_igl_per_face_normals_stable = R"igl_Qu8mg5v7(// Special version where order of face indices is guaranteed not to effect
- // output.)igl_Qu8mg5v7";
- const char *__doc_igl_per_vertex_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
- // Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 3 eigne Matrix of face (triangle) indices
- // weighting Weighting type
- // Output:
- // N #V by 3 eigen Matrix of mesh vertex 3D normals)igl_Qu8mg5v7";
- const char *__doc_igl_planarize_quad_mesh = R"igl_Qu8mg5v7(// Inputs:
- // Vin #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 4 eigen Matrix of face (quad) indices
- // maxIter maximum numbers of iterations
- // threshold minimum allowed threshold for non-planarity
- // Output:
- // Vout #V by 3 eigen Matrix of planar mesh vertex 3D positions
- //)igl_Qu8mg5v7";
- const char *__doc_igl_png_readPNG = R"igl_Qu8mg5v7(// Read an image from a .png file into 4 memory buffers
- //
- // Input:
- // png_file path to .png file
- // Output:
- // R,G,B,A texture channels
- // Returns true on success, false on failure
- //)igl_Qu8mg5v7";
- const char *__doc_igl_png_writePNG = R"igl_Qu8mg5v7(// Writes an image to a png file
- //
- // Input:
- // R,G,B,A texture channels
- // Output:
- // png_file path to .png file
- // Returns true on success, false on failure
- //)igl_Qu8mg5v7";
- const char *__doc_igl_point_mesh_squared_distance = R"igl_Qu8mg5v7(// Compute distances from a set of points P to a triangle mesh (V,F)
- //
- // Inputs:
- // P #P by 3 list of query point positions
- // V #V by 3 list of vertex positions
- // Ele #Ele by (3|2|1) list of (triangle|edge|point) indices
- // Outputs:
- // sqrD #P list of smallest squared distances
- // I #P list of primitive indices corresponding to smallest distances
- // C #P by 3 list of closest points
- //
- // Known bugs: This only computes distances to given primitivess. So
- // unreferenced vertices are ignored. However, degenerate primitives are
- // handled correctly: triangle [1 2 2] is treated as a segment [1 2], and
- // triangle [1 1 1] is treated as a point. So one _could_ add extra
- // combinatorially degenerate rows to Ele for all unreferenced vertices to
- // also get distances to points.)igl_Qu8mg5v7";
- const char *__doc_igl_polar_svd = R"igl_Qu8mg5v7(// Computes the polar decomposition (R,T) of a matrix A using SVD singular
- // value decomposition
- //
- // Inputs:
- // A 3 by 3 matrix to be decomposed
- // Outputs:
- // R 3 by 3 rotation matrix part of decomposition (**always rotataion**)
- // T 3 by 3 stretch matrix part of decomposition
- // U 3 by 3 left-singular vectors
- // S 3 by 1 singular values
- // V 3 by 3 right-singular vectors
- //
- //)igl_Qu8mg5v7";
- const char *__doc_igl_principal_curvature = R"igl_Qu8mg5v7(// Compute the principal curvature directions and magnitude of the given triangle mesh
- // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
- // DerivedF derived from face indices matrix type: i.e. MatrixXi
- // Inputs:
- // V eigen matrix #V by 3
- // F #F by 3 list of mesh faces (must be triangles)
- // radius controls the size of the neighbourhood used, 1 = average edge length
- //
- // Outputs:
- // PD1 #V by 3 maximal curvature direction for each vertex.
- // PD2 #V by 3 minimal curvature direction for each vertex.
- // PV1 #V by 1 maximal curvature value for each vertex.
- // PV2 #V by 1 minimal curvature value for each vertex.
- //
- // See also: average_onto_faces, average_onto_vertices
- //
- // This function has been developed by: Nikolas De Giorgis, Luigi Rocca and Enrico Puppo.
- // The algorithm is based on:
- // Efficient Multi-scale Curvature and Crease Estimation
- // Daniele Panozzo, Enrico Puppo, Luigi Rocca
- // GraVisMa, 2010)igl_Qu8mg5v7";
- const char *__doc_igl_quad_planarity = R"igl_Qu8mg5v7(// Compute planarity of the faces of a quad mesh
- // Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 4 eigen Matrix of face (quad) indices
- // Output:
- // P #F by 1 eigen Matrix of mesh face (quad) planarities
- //)igl_Qu8mg5v7";
- const char *__doc_igl_randperm = R"igl_Qu8mg5v7(// Like matlab's randperm(n) but minus 1
- //
- // Inputs:
- // n number of elements
- // Outputs:
- // I n list of rand permutation of 0:n-1)igl_Qu8mg5v7";
- const char *__doc_igl_readDMAT = R"igl_Qu8mg5v7(See readDMAT for the documentation.)igl_Qu8mg5v7";
- const char *__doc_igl_readMESH = R"igl_Qu8mg5v7(// load a tetrahedral volume mesh from a .mesh file
- //
- // Templates:
- // Scalar type for positions and vectors (will be read as double and cast
- // to Scalar)
- // Index type for indices (will be read as int and cast to Index)
- // Input:
- // mesh_file_name path of .mesh file
- // Outputs:
- // V double matrix of vertex positions #V by 3
- // T #T list of tet indices into vertex positions
- // F #F list of face indices into vertex positions
- //
- // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
- const char *__doc_igl_readOBJ = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
- // and texture coordinates. Mesh may have faces of any number of degree
- //
- // Templates:
- // Scalar type for positions and vectors (will be read as double and cast
- // to Scalar)
- // Index type for indices (will be read as int and cast to Index)
- // Inputs:
- // str path to .obj file
- // Outputs:
- // V double matrix of vertex positions #V by 3
- // TC double matrix of texture coordinats #TC by 2
- // N double matrix of corner normals #N by 3
- // F #F list of face indices into vertex positions
- // FTC #F list of face indices into vertex texture coordinates
- // FN #F list of face indices into vertex normals
- // Returns true on success, false on errors)igl_Qu8mg5v7";
- const char *__doc_igl_readOFF = R"igl_Qu8mg5v7(// Read a mesh from an ascii OFF file, filling in vertex positions, normals
- // and texture coordinates. Mesh may have faces of any number of degree
- //
- // Templates:
- // Scalar type for positions and vectors (will be read as double and cast
- // to Scalar)
- // Index type for indices (will be read as int and cast to Index)
- // Inputs:
- // str path to .obj file
- // Outputs:
- // V double matrix of vertex positions #V by 3
- // F #F list of face indices into vertex positions
- // N list of vertex normals #V by 3
- // C list of rgb color values per vertex #V by 3
- // Returns true on success, false on errors)igl_Qu8mg5v7";
- const char *__doc_igl_readTGF = R"igl_Qu8mg5v7(// READTGF
- //
- // [V,E,P,BE,CE,PE] = readTGF(filename)
- //
- // Read a graph from a .tgf file
- //
- // Input:
- // filename .tgf file name
- // Output:
- // V # vertices by 3 list of vertex positions
- // E # edges by 2 list of edge indices
- // P # point-handles list of point handle indices
- // BE # bone-edges by 2 list of bone-edge indices
- // CE # cage-edges by 2 list of cage-edge indices
- // PE # pseudo-edges by 2 list of pseudo-edge indices
- //
- // Assumes that graph vertices are 3 dimensional)igl_Qu8mg5v7";
- const char *__doc_igl_read_triangle_mesh = R"igl_Qu8mg5v7(// read mesh from an ascii file with automatic detection of file format.
- // supported: obj, off, stl, wrl, ply, mesh)
- //
- // Templates:
- // Scalar type for positions and vectors (will be read as double and cast
- // to Scalar)
- // Index type for indices (will be read as int and cast to Index)
- // Inputs:
- // str path to file
- // Outputs:
- // V eigen double matrix #V by 3
- // F eigen int matrix #F by 3
- // Returns true iff success)igl_Qu8mg5v7";
- const char *__doc_igl_remove_duplicate_vertices = R"igl_Qu8mg5v7(// REMOVE_DUPLICATE_VERTICES Remove duplicate vertices upto a uniqueness
- // tolerance (epsilon)
- //
- // Inputs:
- // V #V by dim list of vertex positions
- // epsilon uniqueness tolerance (significant digit), can probably think of
- // this as a tolerance on L1 distance
- // Outputs:
- // SV #SV by dim new list of vertex positions
- // SVI #V by 1 list of indices so SV = V(SVI,:)
- // SVJ #SV by 1 list of indices so V = SV(SVJ,:)
- //
- // Example:
- // % Mesh in (V,F)
- // [SV,SVI,SVJ] = remove_duplicate_vertices(V,1e-7);
- // % remap faces
- // SF = SVJ(F);
- //)igl_Qu8mg5v7";
- const char *__doc_igl_rotate_vectors = R"igl_Qu8mg5v7(// Rotate the vectors V by A radiants on the tangent plane spanned by B1 and
- // B2
- //
- // Inputs:
- // V #V by 3 eigen Matrix of vectors
- // A #V eigen vector of rotation angles or a single angle to be applied
- // to all vectors
- // B1 #V by 3 eigen Matrix of base vector 1
- // B2 #V by 3 eigen Matrix of base vector 2
- //
- // Output:
- // Returns the rotated vectors
- //)igl_Qu8mg5v7";
- const char *__doc_igl_setdiff = R"igl_Qu8mg5v7(// Set difference of elements of matrices
- //
- // Inputs:
- // A m-long vector of indices
- // B n-long vector of indices
- // Outputs:
- // C (k<=m)-long vector of unique elements appearing in A but not in B
- // IA (k<=m)-long list of indices into A so that C = A(IA)
- //)igl_Qu8mg5v7";
- const char *__doc_igl_shape_diameter_function = R"igl_Qu8mg5v7(// Compute shape diamater function per given point. In the parlence of the
- // paper "Consistent Mesh Partitioning and Skeletonisation using the Shape
- // Diameter Function" [Shapiro et al. 2008], this implementation uses a 180°
- // cone and a _uniform_ average (_not_ a average weighted by inverse angles).
- //
- // Inputs:
- // shoot_ray function handle that outputs hits of a given ray against a
- // mesh (embedded in function handles as captured variable/data)
- // P #P by 3 list of origin points
- // N #P by 3 list of origin normals
- // Outputs:
- // S #P list of shape diamater function values between bounding box
- // diagonal (perfect sphere) and 0 (perfect needle hook)
- //)igl_Qu8mg5v7";
- const char *__doc_igl_signed_distance = R"igl_Qu8mg5v7(// Computes signed distance to a mesh
- //
- // Inputs:
- // P #P by 3 list of query point positions
- // V #V by 3 list of vertex positions
- // F #F by ss list of triangle indices, ss should be 3 unless sign_type ==
- // SIGNED_DISTANCE_TYPE_UNSIGNED
- // sign_type method for computing distance _sign_ S
- // Outputs:
- // S #P list of smallest signed distances
- // I #P list of facet indices corresponding to smallest distances
- // C #P by 3 list of closest points
- // N #P by 3 list of closest normals (only set if
- // sign_type=SIGNED_DISTANCE_TYPE_PSEUDONORMAL)
- //
- // Known bugs: This only computes distances to triangles. So unreferenced
- // vertices and degenerate triangles are ignored.)igl_Qu8mg5v7";
- const char *__doc_igl_signed_distance_pseudonormal = R"igl_Qu8mg5v7(// Computes signed distance to mesh
- //
- // Inputs:
- // tree AABB acceleration tree (see AABB.h)
- // F #F by 3 list of triangle indices
- // FN #F by 3 list of triangle normals
- // VN #V by 3 list of vertex normals (ANGLE WEIGHTING)
- // EN #E by 3 list of edge normals (UNIFORM WEIGHTING)
- // EMAP #F*3 mapping edges in F to E
- // q Query point
- // Returns signed distance to mesh
- //)igl_Qu8mg5v7";
- const char *__doc_igl_signed_distance_winding_number = R"igl_Qu8mg5v7(// Inputs:
- // tree AABB acceleration tree (see cgal/point_mesh_squared_distance.h)
- // hier Winding number evaluation hierarchy
- // q Query point
- // Returns signed distance to mesh)igl_Qu8mg5v7";
- const char *__doc_igl_slice = R"igl_Qu8mg5v7(// Act like the matlab X(row_indices,col_indices) operator, where
- // row_indices, col_indices are non-negative integer indices.
- //
- // Inputs:
- // X m by n matrix
- // R list of row indices
- // C list of column indices
- // Output:
- // Y #R by #C matrix
- //
- // See also: slice_mask)igl_Qu8mg5v7";
- const char *__doc_igl_slice_into = R"igl_Qu8mg5v7(// Act like the matlab Y(row_indices,col_indices) = X
- //
- // Inputs:
- // X xm by xn rhs matrix
- // R list of row indices
- // C list of column indices
- // Y ym by yn lhs matrix
- // Output:
- // Y ym by yn lhs matrix, same as input but Y(R,C) = X)igl_Qu8mg5v7";
- const char *__doc_igl_slice_mask = R"igl_Qu8mg5v7(// Act like the matlab X(row_mask,col_mask) operator, where
- // row_mask, col_mask are non-negative integer indices.
- //
- // Inputs:
- // X m by n matrix
- // R m list of row bools
- // C n list of column bools
- // Output:
- // Y #trues-in-R by #trues-in-C matrix
- //
- // See also: slice_mask)igl_Qu8mg5v7";
- const char *__doc_igl_marching_tets = R"igl_Qu8mg5v7(// SLICE_TETS Slice through a tet mesh (V,T) along a given plane (via its
- // implicit equation).
- //
- // Inputs:
- // V #V by 3 list of tet mesh vertices
- // T #T by 4 list of tet indices into V
- // plane list of 4 coefficients in the plane equation: [x y z 1]'*plane = 0
- // Optional:
- // 'Manifold' followed by whether to stitch together triangles into a
- // manifold mesh {true}: results in more compact U but slightly slower.
- // Outputs:
- // U #U by 3 list of triangle mesh vertices along slice
- // G #G by 3 list of triangles indices into U
- // J #G list of indices into T revealing from which tet each faces comes
- // BC #U by #V list of barycentric coordinates (or more generally: linear
- // interpolation coordinates) so that U = BC*V
- // )igl_Qu8mg5v7";
- const char *__doc_igl_sortrows = R"igl_Qu8mg5v7(// Act like matlab's [Y,I] = sortrows(X)
- //
- // Templates:
- // DerivedX derived scalar type, e.g. MatrixXi or MatrixXd
- // DerivedI derived integer type, e.g. MatrixXi
- // Inputs:
- // X m by n matrix whose entries are to be sorted
- // ascending sort ascending (true, matlab default) or descending (false)
- // Outputs:
- // Y m by n matrix whose entries are sorted (**should not** be same
- // reference as X)
- // I m list of indices so that
- // Y = X(I,:);)igl_Qu8mg5v7";
- const char *__doc_igl_streamlines_init = R"igl_Qu8mg5v7(// Given a mesh and a field the function computes the /data/ necessary for tracing the field'
- // streamlines, and creates the initial /state/ for the tracing.
- // Inputs:
- // V #V by 3 list of mesh vertex coordinates
- // F #F by 3 list of mesh faces
- // temp_field #F by 3n list of the 3D coordinates of the per-face vectors
- // (n-degrees stacked horizontally for each triangle)
- // treat_as_symmetric
- // if true, adds n symmetry directions to the field (N = 2n). Else N = n
- // percentage [0-1] percentage of faces sampled
- // Outputs:
- // data struct containing topology information of the mesh and field
- // state struct containing the state of the tracing)igl_Qu8mg5v7";
- const char *__doc_igl_streamlines_next = R"igl_Qu8mg5v7(// The function computes the next state for each point in the sample
- // V #V by 3 list of mesh vertex coordinates
- // F #F by 3 list of mesh faces
- // data struct containing topology information
- // state struct containing the state of the tracing)igl_Qu8mg5v7";
- const char *__doc_igl_triangle_triangle_adjacency = R"igl_Qu8mg5v7(// Constructs the triangle-triangle adjacency matrix for a given
- // mesh (V,F).
- //
- // Templates:
- // Scalar derived type of eigen matrix for V (e.g. derived from
- // MatrixXd)
- // Index derived type of eigen matrix for F (e.g. derived from
- // MatrixXi)
- // Inputs:
- // F #F by simplex_size list of mesh faces (must be triangles)
- // Outputs:
- // TT #F by #3 adjacent matrix, the element i,j is the id of the triangle adjacent to the j edge of triangle i
- // TTi #F by #3 adjacent matrix, the element i,j is the id of edge of the triangle TT(i,j) that is adjacent with triangle i
- // NOTE: the first edge of a triangle is [0,1] the second [1,2] and the third [2,3].
- // this convention is DIFFERENT from cotmatrix_entries.h
- // Known bug: this should not need to take V as input.)igl_Qu8mg5v7";
- const char *__doc_igl_triangle_triangle_adjacency_preprocess = R"igl_Qu8mg5v7(// Preprocessing)igl_Qu8mg5v7";
- const char *__doc_igl_triangle_triangle_adjacency_extractTT = R"igl_Qu8mg5v7(// Extract the face adjacencies)igl_Qu8mg5v7";
- const char *__doc_igl_triangle_triangle_adjacency_extractTTi = R"igl_Qu8mg5v7(// Extract the face adjacencies indices (needed for fast traversal))igl_Qu8mg5v7";
- const char *__doc_igl_triangle_triangulate = R"igl_Qu8mg5v7(// Triangulate the interior of a polygon using the triangle library.
- //
- // Inputs:
- // V #V by 2 list of 2D vertex positions
- // E #E by 2 list of vertex ids forming unoriented edges of the boundary of the polygon
- // H #H by 2 coordinates of points contained inside holes of the polygon
- // flags string of options pass to triangle (see triangle documentation)
- // Outputs:
- // V2 #V2 by 2 coordinates of the vertives of the generated triangulation
- // F2 #F2 by 3 list of indices forming the faces of the generated triangulation
- //)igl_Qu8mg5v7";
- const char *__doc_igl_unique = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X)
- //
- // Templates:
- // T comparable type T
- // Inputs:
- // A #A vector of type T
- // Outputs:
- // C #C vector of unique entries in A
- // IA #C index vector so that C = A(IA);
- // IC #A index vector so that A = C(IC);)igl_Qu8mg5v7";
- const char *__doc_igl_unique_rows = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X,'rows')
- //
- // Templates:
- // DerivedA derived scalar type, e.g. MatrixXi or MatrixXd
- // DerivedIA derived integer type, e.g. MatrixXi
- // DerivedIC derived integer type, e.g. MatrixXi
- // Inputs:
- // A m by n matrix whose entries are to unique'd according to rows
- // Outputs:
- // C #C vector of unique rows in A
- // IA #C index vector so that C = A(IA,:);
- // IC #A index vector so that A = C(IC,:);)igl_Qu8mg5v7";
- const char *__doc_igl_unproject_onto_mesh = R"igl_Qu8mg5v7(// Unproject a screen location (using current opengl viewport, projection, and
- // model view) to a 3D position _onto_ a given mesh, if the ray through the
- // given screen location (x,y) _hits_ the mesh.
- //
- // Inputs:
- // pos screen space coordinates
- // model model matrix
- // proj projection matrix
- // viewport vieweport vector
- // V #V by 3 list of mesh vertex positions
- // F #F by 3 list of mesh triangle indices into V
- // Outputs:
- // fid id of the first face hit
- // bc barycentric coordinates of hit
- // Returns true if there's a hit)igl_Qu8mg5v7";
- const char *__doc_igl_upsample = R"igl_Qu8mg5v7(// Subdivide without moving vertices: Given the triangle mesh [V, F],
- // where n_verts = V.rows(), computes newV and a sparse matrix S s.t.
- // [newV, newF] is the subdivided mesh where newV = S*V.
- //
- // Inputs:
- // n_verts an integer (number of mesh vertices)
- // F an m by 3 matrix of integers of triangle faces
- // Outputs:
- // S a sparse matrix (will become the subdivision matrix)
- // newF a matrix containing the new faces)igl_Qu8mg5v7";
- const char *__doc_igl_winding_number = R"igl_Qu8mg5v7(// WINDING_NUMBER Compute the sum of solid angles of a triangle/tetrahedron
- // described by points (vectors) V
- //
- // Templates:
- // dim dimension of input
- // Inputs:
- // V n by 3 list of vertex positions
- // F #F by 3 list of triangle indices, minimum index is 0
- // O no by 3 list of origin positions
- // Outputs:
- // S no by 1 list of winding numbers
- //
- // 3d)igl_Qu8mg5v7";
- const char *__doc_igl_winding_number_3 = R"igl_Qu8mg5v7(// Inputs:
- // V pointer to array containing #V by 3 vertex positions along rows,
- // given in column major order
- // n number of mesh vertices
- // F pointer to array containing #F by 3 face indices along rows,
- // given in column major order
- // m number of faces
- // O pointer to array containing #O by 3 query positions along rows,
- // given in column major order
- // no number of origins
- // Outputs:
- // S no by 1 list of winding numbers)igl_Qu8mg5v7";
- const char *__doc_igl_winding_number_2 = R"igl_Qu8mg5v7(//// Only one evaluation origin
- //template <typename DerivedF>
- //IGL_INLINE void winding_number_3(
- // const double * V,
- // const int n,
- // const DerivedF * F,
- // const int m,
- // const double * O,
- // double * S);
- // 2d)igl_Qu8mg5v7";
- const char *__doc_igl_writeMESH = R"igl_Qu8mg5v7(// save a tetrahedral volume mesh to a .mesh file
- //
- // Templates:
- // Scalar type for positions and vectors (will be cast as double)
- // Index type for indices (will be cast to int)
- // Input:
- // mesh_file_name path of .mesh file
- // V double matrix of vertex positions #V by 3
- // T #T list of tet indices into vertex positions
- // F #F list of face indices into vertex positions
- //
- // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
- const char *__doc_igl_writeOBJ = R"igl_Qu8mg5v7(// Write a mesh in an ascii obj file
- // Inputs:
- // str path to outputfile
- // V #V by 3 mesh vertex positions
- // F #F by 3|4 mesh indices into V
- // CN #CN by 3 normal vectors
- // FN #F by 3|4 corner normal indices into CN
- // TC #TC by 2|3 texture coordinates
- // FTC #F by 3|4 corner texture coord indices into TC
- // Returns true on success, false on error
- //
- // Known issues: Horrifyingly, this does not have the same order of
- // parameters as readOBJ.)igl_Qu8mg5v7";
- const char *__doc_igl_writePLY = R"igl_Qu8mg5v7(// Write a mesh in an ascii ply file
- // Inputs:
- // str path to outputfile
- // V #V by 3 mesh vertex positions
- // F #F by 3 mesh indices into V
- // N #V by 3 normal vectors
- // UV #V by 2 texture coordinates
- // Returns true on success, false on error)igl_Qu8mg5v7";
- const char *__doc_igl_readPLY= R"igl_Qu8mg5v7(// Read a mesh from an ascii ply file, filling in vertex positions,
- // mesh indices, normals and texture coordinates
- // Inputs:
- // str path to .obj file
- // Outputs:
- // V double matrix of vertex positions #V by 3
- // F #F list of face indices into vertex positions
- // N double matrix of corner normals #N by 3
- // UV #V by 2 texture coordinates
- // Returns true on success, false on errors)igl_Qu8mg5v7";
- const char *__doc_igl_seam_edges=R"igl_Qu8mg5v7(// Finds all UV-space boundaries of a mesh.
- //
- // Inputs:
- // V #V by dim list of positions of the input mesh.
- // TC #TC by 2 list of 2D texture coordinates of the input mesh
- // F #F by 3 list of triange indices into V representing a
- // manifold-with-boundary triangle mesh
- // FTC #F by 3 list of indices into TC for each corner
- // Outputs:
- // seams Edges where the forwards and backwards directions have different
- // texture coordinates, as a #seams-by-4 matrix of indices. Each row is
- // organized as [ forward_face_index, forward_face_vertex_index,
- // backwards_face_index, backwards_face_vertex_index ] such that one side
- // of the seam is the edge:
- // F[ seams( i, 0 ), seams( i, 1 ) ], F[ seams( i, 0 ), (seams( i, 1 ) + 1) % 3 ]
- // and the other side is the edge:
- // F[ seams( i, 2 ), seams( i, 3 ) ], F[ seams( i, 2 ), (seams( i, 3 ) + 1) % 3 ]
- // boundaries Edges with only one incident triangle, as a #boundaries-by-2
- // matrix of indices. Each row is organized as
- // [ face_index, face_vertex_index ]
- // such that the edge is:
- // F[ boundaries( i, 0 ), boundaries( i, 1 ) ], F[ boundaries( i, 0 ), (boundaries( i, 1 ) + 1) % 3 ]
- // foldovers Edges where the two incident triangles fold over each other
- // in UV-space, as a #foldovers-by-4 matrix of indices.
- // Each row is organized as [ forward_face_index, forward_face_vertex_index,
- // backwards_face_index, backwards_face_vertex_index ]
- // such that one side of the foldover is the edge:
- // F[ foldovers( i, 0 ), foldovers( i, 1 ) ], F[ foldovers( i, 0 ), (foldovers( i, 1 ) + 1) % 3 ]
- // and the other side is the edge:
- // F[ foldovers( i, 2 ), foldovers( i, 3 ) ], F[ foldovers( i, 2 ), (foldovers( i, 3 ) + 1) % 3 ])igl_Qu8mg5v7";
|