py_doc.cpp 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077
  1. const char *__doc_igl_active_set = R"igl_Qu8mg5v7(// Known Bugs: rows of [Aeq;Aieq] **must** be linearly independent. Should be
  2. // using QR decomposition otherwise:
  3. // http://www.okstate.edu/sas/v8/sashtml/ormp/chap5/sect32.htm
  4. //
  5. // ACTIVE_SET Minimize quadratic energy
  6. //
  7. // 0.5*Z'*A*Z + Z'*B + C with constraints
  8. //
  9. // that Z(known) = Y, optionally also subject to the constraints Aeq*Z = Beq,
  10. // and further optionally subject to the linear inequality constraints that
  11. // Aieq*Z <= Bieq and constant inequality constraints lx <= x <= ux
  12. //
  13. // Inputs:
  14. // A n by n matrix of quadratic coefficients
  15. // B n by 1 column of linear coefficients
  16. // known list of indices to known rows in Z
  17. // Y list of fixed values corresponding to known rows in Z
  18. // Aeq meq by n list of linear equality constraint coefficients
  19. // Beq meq by 1 list of linear equality constraint constant values
  20. // Aieq mieq by n list of linear inequality constraint coefficients
  21. // Bieq mieq by 1 list of linear inequality constraint constant values
  22. // lx n by 1 list of lower bounds [] implies -Inf
  23. // ux n by 1 list of upper bounds [] implies Inf
  24. // params struct of additional parameters (see below)
  25. // Z if not empty, is taken to be an n by 1 list of initial guess values
  26. // (see output)
  27. // Outputs:
  28. // Z n by 1 list of solution values
  29. // Returns true on success, false on error
  30. //
  31. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  32. // secs, igl/min_quad_with_fixed.h 7.1 secs
  33. //)igl_Qu8mg5v7";
  34. const char *__doc_igl_arap_precomputation = R"igl_Qu8mg5v7(// Compute necessary information to start using an ARAP deformation
  35. //
  36. // Inputs:
  37. // V #V by dim list of mesh positions
  38. // F #F by simplex-size list of triangle|tet indices into V
  39. // dim dimension being used at solve time. For deformation usually dim =
  40. // V.cols(), for surface parameterization V.cols() = 3 and dim = 2
  41. // b #b list of "boundary" fixed vertex indices into V
  42. // Outputs:
  43. // data struct containing necessary precomputation)igl_Qu8mg5v7";
  44. const char *__doc_igl_arap_solve = R"igl_Qu8mg5v7(// Inputs:
  45. // bc #b by dim list of boundary conditions
  46. // data struct containing necessary precomputation and parameters
  47. // U #V by dim initial guess)igl_Qu8mg5v7";
  48. const char *__doc_igl_avg_edge_length = R"igl_Qu8mg5v7(// Compute the average edge length for the given triangle mesh
  49. // Templates:
  50. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  51. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  52. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  53. // Inputs:
  54. // V eigen matrix #V by 3
  55. // F #F by simplex-size list of mesh faces (must be simplex)
  56. // Outputs:
  57. // l average edge length
  58. //
  59. // See also: adjacency_matrix)igl_Qu8mg5v7";
  60. const char *__doc_igl_barycenter = R"igl_Qu8mg5v7(// Computes the barycenter of every simplex
  61. //
  62. // Inputs:
  63. // V #V x dim matrix of vertex coordinates
  64. // F #F x simplex_size matrix of indices of simplex corners into V
  65. // Output:
  66. // BC #F x dim matrix of 3d vertices
  67. //)igl_Qu8mg5v7";
  68. const char *__doc_igl_barycentric_coordinates = R"igl_Qu8mg5v7(// Compute barycentric coordinates in a tet
  69. //
  70. // Inputs:
  71. // P #P by 3 Query points in 3d
  72. // A #P by 3 Tet corners in 3d
  73. // B #P by 3 Tet corners in 3d
  74. // C #P by 3 Tet corners in 3d
  75. // D #P by 3 Tet corners in 3d
  76. // Outputs:
  77. // L #P by 4 list of barycentric coordinates
  78. // )igl_Qu8mg5v7";
  79. const char *__doc_igl_boundary_facets = R"igl_Qu8mg5v7(// BOUNDARY_FACETS Determine boundary faces (edges) of tetrahedra (triangles)
  80. // stored in T (analogous to qptoolbox's `outline` and `boundary_faces`).
  81. //
  82. // Templates:
  83. // IntegerT integer-value: e.g. int
  84. // IntegerF integer-value: e.g. int
  85. // Input:
  86. // T tetrahedron (triangle) index list, m by 4 (3), where m is the number of tetrahedra
  87. // Output:
  88. // F list of boundary faces, n by 3 (2), where n is the number of boundary faces
  89. //
  90. //)igl_Qu8mg5v7";
  91. const char *__doc_igl_boundary_loop = R"igl_Qu8mg5v7(// Compute list of ordered boundary loops for a manifold mesh.
  92. //
  93. // Templates:
  94. // Index index type
  95. // Inputs:
  96. // F #V by dim list of mesh faces
  97. // Outputs:
  98. // L list of loops where L[i] = ordered list of boundary vertices in loop i
  99. //)igl_Qu8mg5v7";
  100. const char *__doc_igl_cat = R"igl_Qu8mg5v7(// Perform concatenation of a two matrices along a single dimension
  101. // If dim == 1, then C = [A;B]. If dim == 2 then C = [A B]
  102. //
  103. // Template:
  104. // Scalar scalar data type for sparse matrices like double or int
  105. // Mat matrix type for all matrices (e.g. MatrixXd, SparseMatrix)
  106. // MatC matrix type for ouput matrix (e.g. MatrixXd) needs to support
  107. // resize
  108. // Inputs:
  109. // A first input matrix
  110. // B second input matrix
  111. // dim dimension along which to concatenate, 0 or 1
  112. // Outputs:
  113. // C output matrix
  114. // )igl_Qu8mg5v7";
  115. const char *__doc_igl_collapse_edge = R"igl_Qu8mg5v7(See collapse_edge for the documentation.)igl_Qu8mg5v7";
  116. const char *__doc_igl_colon = R"igl_Qu8mg5v7(// Colon operator like matlab's colon operator. Enumerats values between low
  117. // and hi with step step.
  118. // Templates:
  119. // L should be a eigen matrix primitive type like int or double
  120. // S should be a eigen matrix primitive type like int or double
  121. // H should be a eigen matrix primitive type like int or double
  122. // T should be a eigen matrix primitive type like int or double
  123. // Inputs:
  124. // low starting value if step is valid then this is *always* the first
  125. // element of I
  126. // step step difference between sequential elements returned in I,
  127. // remember this will be cast to template T at compile time. If low<hi
  128. // then step must be positive. If low>hi then step must be negative.
  129. // Otherwise I will be set to empty.
  130. // hi ending value, if (hi-low)%step is zero then this will be the last
  131. // element in I. If step is positive there will be no elements greater
  132. // than hi, vice versa if hi<low
  133. // Output:
  134. // I list of values from low to hi with step size step)igl_Qu8mg5v7";
  135. const char *__doc_igl_comb_cross_field = R"igl_Qu8mg5v7(// Inputs:
  136. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  137. // F #F by 4 eigen Matrix of face (quad) indices
  138. // PD1in #F by 3 eigen Matrix of the first per face cross field vector
  139. // PD2in #F by 3 eigen Matrix of the second per face cross field vector
  140. // Output:
  141. // PD1out #F by 3 eigen Matrix of the first combed cross field vector
  142. // PD2out #F by 3 eigen Matrix of the second combed cross field vector
  143. //)igl_Qu8mg5v7";
  144. const char *__doc_igl_comb_frame_field = R"igl_Qu8mg5v7(// Inputs:
  145. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  146. // F #F by 4 eigen Matrix of face (quad) indices
  147. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  148. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  149. // BIS1_combed #F by 3 eigen Matrix of the first combed bisector field vector
  150. // BIS2_combed #F by 3 eigen Matrix of the second combed bisector field vector
  151. // Output:
  152. // PD1_combed #F by 3 eigen Matrix of the first combed cross field vector
  153. // PD2_combed #F by 3 eigen Matrix of the second combed cross field vector
  154. //)igl_Qu8mg5v7";
  155. const char *__doc_igl_compute_frame_field_bisectors = R"igl_Qu8mg5v7(// Compute bisectors of a frame field defined on mesh faces
  156. // Inputs:
  157. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  158. // F #F by 3 eigen Matrix of face (triangle) indices
  159. // B1 #F by 3 eigen Matrix of face (triangle) base vector 1
  160. // B2 #F by 3 eigen Matrix of face (triangle) base vector 2
  161. // PD1 #F by 3 eigen Matrix of the first per face frame field vector
  162. // PD2 #F by 3 eigen Matrix of the second per face frame field vector
  163. // Output:
  164. // BIS1 #F by 3 eigen Matrix of the first per face frame field bisector
  165. // BIS2 #F by 3 eigen Matrix of the second per face frame field bisector
  166. //)igl_Qu8mg5v7";
  167. const char *__doc_igl_copyleft_cgal_mesh_boolean = R"igl_Qu8mg5v7(// MESH_BOOLEAN Compute boolean csg operations on "solid", consistently
  168. // oriented meshes.
  169. //
  170. // Inputs:
  171. // VA #VA by 3 list of vertex positions of first mesh
  172. // FA #FA by 3 list of triangle indices into VA
  173. // VB #VB by 3 list of vertex positions of second mesh
  174. // FB #FB by 3 list of triangle indices into VB
  175. // type type of boolean operation
  176. // Outputs:
  177. // VC #VC by 3 list of vertex positions of boolean result mesh
  178. // FC #FC by 3 list of triangle indices into VC
  179. // J #FC list of indices into [FA;FA.rows()+FB] revealing "birth" facet
  180. // Returns true if inputs induce a piecewise constant winding number
  181. // field and type is valid
  182. //
  183. // See also: mesh_boolean_cork, intersect_other,
  184. // remesh_self_intersections)igl_Qu8mg5v7";
  185. const char *__doc_igl_copyleft_comiso_miq = R"igl_Qu8mg5v7(// Inputs:
  186. // V #V by 3 list of mesh vertex 3D positions
  187. // F #F by 3 list of faces indices in V
  188. // PD1 #V by 3 first line of the Jacobian per triangle
  189. // PD2 #V by 3 second line of the Jacobian per triangle
  190. // (optional, if empty it will be a vector in the tangent plane orthogonal to PD1)
  191. // scale global scaling for the gradient (controls the quads resolution)
  192. // stiffness weight for the stiffness iterations
  193. // direct_round greedily round all integer variables at once (greatly improves optimization speed but lowers quality)
  194. // iter stiffness iterations (0 = no stiffness)
  195. // local_iter number of local iterations for the integer rounding
  196. // do_round enables the integer rounding (disabling it could be useful for debugging)
  197. // round_vertices id of additional vertices that should be snapped to integer coordinates
  198. // hard_features #H by 2 list of pairs of vertices that belongs to edges that should be snapped to integer coordinates
  199. //
  200. // Output:
  201. // UV #UV by 2 list of vertices in 2D
  202. // FUV #FUV by 3 list of face indices in UV
  203. //
  204. // TODO: rename the parameters name in the cpp consistenly
  205. // improve the handling of hard_features, right now it might fail in difficult cases)igl_Qu8mg5v7";
  206. const char *__doc_igl_copyleft_comiso_nrosy = R"igl_Qu8mg5v7(// Generate a N-RoSy field from a sparse set of constraints
  207. //
  208. // Inputs:
  209. // V #V by 3 list of mesh vertex coordinates
  210. // F #F by 3 list of mesh faces (must be triangles)
  211. // b #B by 1 list of constrained face indices
  212. // bc #B by 3 list of representative vectors for the constrained
  213. // faces
  214. // b_soft #S by 1 b for soft constraints
  215. // w_soft #S by 1 weight for the soft constraints (0-1)
  216. // bc_soft #S by 3 bc for soft constraints
  217. // N the degree of the N-RoSy vector field
  218. // soft the strenght of the soft contraints w.r.t. smoothness
  219. // (0 -> smoothness only, 1->constraints only)
  220. // Outputs:
  221. // R #F by 3 the representative vectors of the interpolated field
  222. // S #V by 1 the singularity index for each vertex (0 = regular))igl_Qu8mg5v7";
  223. const char *__doc_igl_copyleft_marching_cubes = R"igl_Qu8mg5v7(// marching_cubes( values, points, x_res, y_res, z_res, vertices, faces )
  224. //
  225. // performs marching cubes reconstruction on the grid defined by values, and
  226. // points, and generates vertices and faces
  227. //
  228. // Input:
  229. // values #number_of_grid_points x 1 array -- the scalar values of an
  230. // implicit function defined on the grid points (<0 in the inside of the
  231. // surface, 0 on the border, >0 outside)
  232. // points #number_of_grid_points x 3 array -- 3-D positions of the grid
  233. // points, ordered in x,y,z order:
  234. // points[index] = the point at (x,y,z) where :
  235. // x = (index % (xres -1),
  236. // y = (index / (xres-1)) %(yres-1),
  237. // z = index / (xres -1) / (yres -1) ).
  238. // where x,y,z index x, y, z dimensions
  239. // i.e. index = x + y*xres + z*xres*yres
  240. // xres resolutions of the grid in x dimension
  241. // yres resolutions of the grid in y dimension
  242. // zres resolutions of the grid in z dimension
  243. // Output:
  244. // vertices #V by 3 list of mesh vertex positions
  245. // faces #F by 3 list of mesh triangle indices
  246. //)igl_Qu8mg5v7";
  247. const char *__doc_igl_copyleft_tetgen_tetrahedralize = R"igl_Qu8mg5v7(// Mesh the interior of a surface mesh (V,F) using tetgen
  248. //
  249. // Inputs:
  250. // V #V by 3 vertex position list
  251. // F #F list of polygon face indices into V (0-indexed)
  252. // switches string of tetgen options (See tetgen documentation) e.g.
  253. // "pq1.414a0.01" tries to mesh the interior of a given surface with
  254. // quality and area constraints
  255. // "" will mesh the convex hull constrained to pass through V (ignores F)
  256. // Outputs:
  257. // TV #V by 3 vertex position list
  258. // TT #T by 4 list of tet face indices
  259. // TF #F by 3 list of triangle face indices
  260. // Returns status:
  261. // 0 success
  262. // 1 tetgen threw exception
  263. // 2 tetgen did not crash but could not create any tets (probably there are
  264. // holes, duplicate faces etc.)
  265. // -1 other error)igl_Qu8mg5v7";
  266. const char *__doc_igl_cotmatrix = R"igl_Qu8mg5v7(// Constructs the cotangent stiffness matrix (discrete laplacian) for a given
  267. // mesh (V,F).
  268. //
  269. // Templates:
  270. // DerivedV derived type of eigen matrix for V (e.g. derived from
  271. // MatrixXd)
  272. // DerivedF derived type of eigen matrix for F (e.g. derived from
  273. // MatrixXi)
  274. // Scalar scalar type for eigen sparse matrix (e.g. double)
  275. // Inputs:
  276. // V #V by dim list of mesh vertex positions
  277. // F #F by simplex_size list of mesh faces (must be triangles)
  278. // Outputs:
  279. // L #V by #V cotangent matrix, each row i corresponding to V(i,:)
  280. //
  281. // See also: adjacency_matrix
  282. //
  283. // Note: This Laplacian uses the convention that diagonal entries are
  284. // **minus** the sum of off-diagonal entries. The diagonal entries are
  285. // therefore in general negative and the matrix is **negative** semi-definite
  286. // (immediately, -L is **positive** semi-definite)
  287. //
  288. // Known bugs: off by 1e-16 on regular grid. I think its a problem of
  289. // arithmetic order in cotmatrix_entries.h: C(i,e) = (arithmetic)/dblA/4)igl_Qu8mg5v7";
  290. const char *__doc_igl_covariance_scatter_matrix = R"igl_Qu8mg5v7(// Construct the covariance scatter matrix for a given arap energy
  291. // Inputs:
  292. // V #V by Vdim list of initial domain positions
  293. // F #F by 3 list of triangle indices into V
  294. // energy ARAPEnergyType enum value defining which energy is being used.
  295. // See ARAPEnergyType.h for valid options and explanations.
  296. // Outputs:
  297. // CSM dim*#V/#F by dim*#V sparse matrix containing special laplacians along
  298. // the diagonal so that when multiplied by V gives covariance matrix
  299. // elements, can be used to speed up covariance matrix computation)igl_Qu8mg5v7";
  300. const char *__doc_igl_cross_field_missmatch = R"igl_Qu8mg5v7(// Inputs:
  301. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  302. // F #F by 3 eigen Matrix of face (quad) indices
  303. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  304. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  305. // isCombed boolean, specifying whether the field is combed (i.e. matching has been precomputed.
  306. // If not, the field is combed first.
  307. // Output:
  308. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  309. // across all face edges
  310. //)igl_Qu8mg5v7";
  311. const char *__doc_igl_cut_mesh_from_singularities = R"igl_Qu8mg5v7(// Given a mesh (V,F) and the integer mismatch of a cross field per edge
  312. // (MMatch), finds the cut_graph connecting the singularities (seams) and the
  313. // degree of the singularities singularity_index
  314. //
  315. // Input:
  316. // V #V by 3 list of mesh vertex positions
  317. // F #F by 3 list of faces
  318. // MMatch #F by 3 list of per corner integer mismatch
  319. // Outputs:
  320. // seams #F by 3 list of per corner booleans that denotes if an edge is a
  321. // seam or not
  322. //)igl_Qu8mg5v7";
  323. const char *__doc_igl_doublearea = R"igl_Qu8mg5v7(// DOUBLEAREA computes twice the area for each input triangle[quad]
  324. //
  325. // Templates:
  326. // DerivedV derived type of eigen matrix for V (e.g. derived from
  327. // MatrixXd)
  328. // DerivedF derived type of eigen matrix for F (e.g. derived from
  329. // MatrixXi)
  330. // DeriveddblA derived type of eigen matrix for dblA (e.g. derived from
  331. // MatrixXd)
  332. // Inputs:
  333. // V #V by dim list of mesh vertex positions
  334. // F #F by simplex_size list of mesh faces (must be triangles or quads)
  335. // Outputs:
  336. // dblA #F list of triangle[quad] double areas (SIGNED only for 2D input)
  337. //
  338. // Known bug: For dim==3 complexity is O(#V + #F)!! Not just O(#F). This is a big deal
  339. // if you have 1million unreferenced vertices and 1 face)igl_Qu8mg5v7";
  340. const char *__doc_igl_doublearea_single = R"igl_Qu8mg5v7(// Single triangle in 2D!
  341. //
  342. // This should handle streams of corners not just single corners)igl_Qu8mg5v7";
  343. const char *__doc_igl_doublearea_quad = R"igl_Qu8mg5v7(// DOUBLEAREA_QUAD computes twice the area for each input quadrilateral
  344. //
  345. // Inputs:
  346. // V #V by dim list of mesh vertex positions
  347. // F #F by simplex_size list of mesh faces (must be quadrilaterals)
  348. // Outputs:
  349. // dblA #F list of quadrilateral double areas
  350. //)igl_Qu8mg5v7";
  351. const char *__doc_igl_edge_lengths = R"igl_Qu8mg5v7(// Constructs a list of lengths of edges opposite each index in a face
  352. // (triangle/tet) list
  353. //
  354. // Templates:
  355. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  356. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  357. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  358. // Inputs:
  359. // V eigen matrix #V by 3
  360. // F #F by 2 list of mesh edges
  361. // or
  362. // F #F by 3 list of mesh faces (must be triangles)
  363. // or
  364. // T #T by 4 list of mesh elements (must be tets)
  365. // Outputs:
  366. // L #F by {1|3|6} list of edge lengths
  367. // for edges, column of lengths
  368. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  369. // for tets, columns correspond to edges
  370. // [3 0],[3 1],[3 2],[1 2],[2 0],[0 1]
  371. //)igl_Qu8mg5v7";
  372. const char *__doc_igl_eigs = R"igl_Qu8mg5v7(See eigs for the documentation.)igl_Qu8mg5v7";
  373. const char *__doc_igl_embree_ambient_occlusion = R"igl_Qu8mg5v7(// Compute ambient occlusion per given point
  374. //
  375. // Inputs:
  376. // ei EmbreeIntersector containing (V,F)
  377. // P #P by 3 list of origin points
  378. // N #P by 3 list of origin normals
  379. // Outputs:
  380. // S #P list of ambient occlusion values between 1 (fully occluded) and
  381. // 0 (not occluded)
  382. //)igl_Qu8mg5v7";
  383. const char *__doc_igl_embree_reorient_facets_raycast = R"igl_Qu8mg5v7(// Orient each component (identified by C) of a mesh (V,F) using ambient
  384. // occlusion such that the front side is less occluded than back side, as
  385. // described in "A Simple Method for Correcting Facet Orientations in
  386. // Polygon Meshes Based on Ray Casting" [Takayama et al. 2014].
  387. //
  388. // Inputs:
  389. // V #V by 3 list of vertex positions
  390. // F #F by 3 list of triangle indices
  391. // rays_total Total number of rays that will be shot
  392. // rays_minimum Minimum number of rays that each patch should receive
  393. // facet_wise Decision made for each face independently, no use of patches
  394. // (i.e., each face is treated as a patch)
  395. // use_parity Use parity mode
  396. // is_verbose Verbose output to cout
  397. // Outputs:
  398. // I #F list of whether face has been flipped
  399. // C #F list of patch ID (output of bfs_orient > manifold patches))igl_Qu8mg5v7";
  400. const char *__doc_igl_find_cross_field_singularities = R"igl_Qu8mg5v7(// Inputs:
  401. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  402. // F #F by 3 eigen Matrix of face (quad) indices
  403. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  404. // across all face edges
  405. // Output:
  406. // isSingularity #V by 1 boolean eigen Vector indicating the presence of a singularity on a vertex
  407. // singularityIndex #V by 1 integer eigen Vector containing the singularity indices
  408. //)igl_Qu8mg5v7";
  409. const char *__doc_igl_fit_rotations = R"igl_Qu8mg5v7(// Known issues: This seems to be implemented in Eigen/Geometry:
  410. // Eigen::umeyama
  411. //
  412. // FIT_ROTATIONS Given an input mesh and new positions find rotations for
  413. // every covariance matrix in a stack of covariance matrices
  414. //
  415. // Inputs:
  416. // S nr*dim by dim stack of covariance matrices
  417. // single_precision whether to use single precision (faster)
  418. // Outputs:
  419. // R dim by dim * nr list of rotations
  420. //)igl_Qu8mg5v7";
  421. const char *__doc_igl_fit_rotations_planar = R"igl_Qu8mg5v7(// FIT_ROTATIONS Given an input mesh and new positions find 2D rotations for
  422. // every vertex that best maps its one ring to the new one ring
  423. //
  424. // Inputs:
  425. // S nr*dim by dim stack of covariance matrices, third column and every
  426. // third row will be ignored
  427. // Outputs:
  428. // R dim by dim * nr list of rotations, third row and third column of each
  429. // rotation will just be identity
  430. //)igl_Qu8mg5v7";
  431. const char *__doc_igl_fit_rotations_SSE = R"igl_Qu8mg5v7(See fit_rotations_SSE for the documentation.)igl_Qu8mg5v7";
  432. const char *__doc_igl_floor = R"igl_Qu8mg5v7(// Floor a given matrix to nearest integers
  433. //
  434. // Inputs:
  435. // X m by n matrix of scalars
  436. // Outputs:
  437. // Y m by n matrix of floored integers)igl_Qu8mg5v7";
  438. const char *__doc_igl_gaussian_curvature = R"igl_Qu8mg5v7(// Compute discrete local integral gaussian curvature (angle deficit, without
  439. // averaging by local area).
  440. //
  441. // Inputs:
  442. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  443. // F #F by 3 eigen Matrix of face (triangle) indices
  444. // Output:
  445. // K #V by 1 eigen Matrix of discrete gaussian curvature values
  446. //)igl_Qu8mg5v7";
  447. const char *__doc_igl_grad = R"igl_Qu8mg5v7(// Gradient of a scalar function defined on piecewise linear elements (mesh)
  448. // is constant on each triangle i,j,k:
  449. // grad(Xijk) = (Xj-Xi) * (Vi - Vk)^R90 / 2A + (Xk-Xi) * (Vj - Vi)^R90 / 2A
  450. // where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
  451. // i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
  452. // 90 degrees
  453. //)igl_Qu8mg5v7";
  454. const char *__doc_igl_harmonic = R"igl_Qu8mg5v7(// Compute k-harmonic weight functions "coordinates".
  455. //
  456. //
  457. // Inputs:
  458. // V #V by dim vertex positions
  459. // F #F by simplex-size list of element indices
  460. // b #b boundary indices into V
  461. // bc #b by #W list of boundary values
  462. // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
  463. // Outputs:
  464. // W #V by #W list of weights
  465. //)igl_Qu8mg5v7";
  466. const char *__doc_igl_hsv_to_rgb = R"igl_Qu8mg5v7(// Convert RGB to HSV
  467. //
  468. // Inputs:
  469. // h hue value (degrees: [0,360])
  470. // s saturation value ([0,1])
  471. // v value value ([0,1])
  472. // Outputs:
  473. // r red value ([0,1])
  474. // g green value ([0,1])
  475. // b blue value ([0,1]))igl_Qu8mg5v7";
  476. const char *__doc_igl_internal_angles = R"igl_Qu8mg5v7(// Compute internal angles for a triangle mesh
  477. //
  478. // Inputs:
  479. // V #V by dim eigen Matrix of mesh vertex nD positions
  480. // F #F by poly-size eigen Matrix of face (triangle) indices
  481. // Output:
  482. // K #F by poly-size eigen Matrix of internal angles
  483. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  484. //
  485. // Known Issues:
  486. // if poly-size ≠ 3 then dim must equal 3.)igl_Qu8mg5v7";
  487. const char *__doc_igl_invert_diag = R"igl_Qu8mg5v7(// Templates:
  488. // T should be a eigen sparse matrix primitive type like int or double
  489. // Inputs:
  490. // X an m by n sparse matrix
  491. // Outputs:
  492. // Y an m by n sparse matrix)igl_Qu8mg5v7";
  493. const char *__doc_igl_is_irregular_vertex = R"igl_Qu8mg5v7(// Determine if a vertex is irregular, i.e. it has more than 6 (triangles)
  494. // or 4 (quads) incident edges. Vertices on the boundary are ignored.
  495. //
  496. // Inputs:
  497. // V #V by dim list of vertex positions
  498. // F #F by 3[4] list of triangle[quads] indices
  499. // Returns #V vector of bools revealing whether vertices are singular
  500. //)igl_Qu8mg5v7";
  501. const char *__doc_igl_jet = R"igl_Qu8mg5v7(// JET like MATLAB's jet
  502. //
  503. // Inputs:
  504. // m number of colors
  505. // Outputs:
  506. // J m by list of RGB colors between 0 and 1
  507. //
  508. //#ifndef IGL_NO_EIGEN
  509. // void jet(const int m, Eigen::MatrixXd & J);
  510. //#endif
  511. // Wrapper for directly computing [r,g,b] values for a given factor f between
  512. // 0 and 1
  513. //
  514. // Inputs:
  515. // f factor determining color value as if 0 was min and 1 was max
  516. // Outputs:
  517. // r red value
  518. // g green value
  519. // b blue value)igl_Qu8mg5v7";
  520. const char *__doc_igl_local_basis = R"igl_Qu8mg5v7(// Compute a local orthogonal reference system for each triangle in the given mesh
  521. // Templates:
  522. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  523. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  524. // Inputs:
  525. // V eigen matrix #V by 3
  526. // F #F by 3 list of mesh faces (must be triangles)
  527. // Outputs:
  528. // B1 eigen matrix #F by 3, each vector is tangent to the triangle
  529. // B2 eigen matrix #F by 3, each vector is tangent to the triangle and perpendicular to B1
  530. // B3 eigen matrix #F by 3, normal of the triangle
  531. //
  532. // See also: adjacency_matrix)igl_Qu8mg5v7";
  533. const char *__doc_igl_lscm = R"igl_Qu8mg5v7(// Compute a Least-squares conformal map parametrization (equivalently
  534. // derived in "Intrinsic Parameterizations of Surface Meshes" [Desbrun et al.
  535. // 2002] and "Least Squares Conformal Maps for Automatic Texture Atlas
  536. // Generation" [Lévy et al. 2002]), though this implementation follows the
  537. // derivation in: "Spectral Conformal Parameterization" [Mullen et al. 2008]
  538. // (note, this does **not** implement the Eigen-decomposition based method in
  539. // [Mullen et al. 2008], which is not equivalent). Input should be a manifold
  540. // mesh (also no unreferenced vertices) and "boundary" (fixed vertices) `b`
  541. // should contain at least two vertices per connected component.
  542. //
  543. // Inputs:
  544. // V #V by 3 list of mesh vertex positions
  545. // F #F by 3 list of mesh faces (must be triangles)
  546. // b #b boundary indices into V
  547. // bc #b by 3 list of boundary values
  548. // Outputs:
  549. // UV #V by 2 list of 2D mesh vertex positions in UV space
  550. // Returns true only on solver success.
  551. //)igl_Qu8mg5v7";
  552. const char *__doc_igl_map_vertices_to_circle = R"igl_Qu8mg5v7(// Map the vertices whose indices are in a given boundary loop (bnd) on the
  553. // unit circle with spacing proportional to the original boundary edge
  554. // lengths.
  555. //
  556. // Inputs:
  557. // V #V by dim list of mesh vertex positions
  558. // b #W list of vertex ids
  559. // Outputs:
  560. // UV #W by 2 list of 2D position on the unit circle for the vertices in b)igl_Qu8mg5v7";
  561. const char *__doc_igl_massmatrix = R"igl_Qu8mg5v7(// Constructs the mass (area) matrix for a given mesh (V,F).
  562. //
  563. // Templates:
  564. // DerivedV derived type of eigen matrix for V (e.g. derived from
  565. // MatrixXd)
  566. // DerivedF derived type of eigen matrix for F (e.g. derived from
  567. // MatrixXi)
  568. // Scalar scalar type for eigen sparse matrix (e.g. double)
  569. // Inputs:
  570. // V #V by dim list of mesh vertex positions
  571. // F #F by simplex_size list of mesh faces (must be triangles)
  572. // type one of the following ints:
  573. // MASSMATRIX_TYPE_BARYCENTRIC barycentric
  574. // MASSMATRIX_TYPE_VORONOI voronoi-hybrid {default}
  575. // MASSMATRIX_TYPE_FULL full {not implemented}
  576. // Outputs:
  577. // M #V by #V mass matrix
  578. //
  579. // See also: adjacency_matrix
  580. //)igl_Qu8mg5v7";
  581. const char *__doc_igl_min_quad_with_fixed_precompute = R"igl_Qu8mg5v7(// Known Bugs: rows of Aeq **should probably** be linearly independent.
  582. // During precomputation, the rows of a Aeq are checked via QR. But in case
  583. // they're not then resulting probably will no longer be sparse: it will be
  584. // slow.
  585. //
  586. // MIN_QUAD_WITH_FIXED Minimize quadratic energy
  587. //
  588. // 0.5*Z'*A*Z + Z'*B + C with
  589. //
  590. // constraints that Z(known) = Y, optionally also subject to the constraints
  591. // Aeq*Z = Beq
  592. //
  593. // Templates:
  594. // T should be a eigen matrix primitive type like int or double
  595. // Inputs:
  596. // A n by n matrix of quadratic coefficients
  597. // known list of indices to known rows in Z
  598. // Y list of fixed values corresponding to known rows in Z
  599. // Aeq m by n list of linear equality constraint coefficients
  600. // pd flag specifying whether A(unknown,unknown) is positive definite
  601. // Outputs:
  602. // data factorization struct with all necessary information to solve
  603. // using min_quad_with_fixed_solve
  604. // Returns true on success, false on error
  605. //
  606. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  607. // secs, igl/min_quad_with_fixed.h 7.1 secs
  608. //)igl_Qu8mg5v7";
  609. const char *__doc_igl_min_quad_with_fixed_solve = R"igl_Qu8mg5v7(// Solves a system previously factored using min_quad_with_fixed_precompute
  610. //
  611. // Template:
  612. // T type of sparse matrix (e.g. double)
  613. // DerivedY type of Y (e.g. derived from VectorXd or MatrixXd)
  614. // DerivedZ type of Z (e.g. derived from VectorXd or MatrixXd)
  615. // Inputs:
  616. // data factorization struct with all necessary precomputation to solve
  617. // B n by 1 column of linear coefficients
  618. // Y b by 1 list of constant fixed values
  619. // Beq m by 1 list of linear equality constraint constant values
  620. // Outputs:
  621. // Z n by cols solution
  622. // sol #unknowns+#lagrange by cols solution to linear system
  623. // Returns true on success, false on error)igl_Qu8mg5v7";
  624. const char *__doc_igl_min_quad_with_fixed = R"igl_Qu8mg5v7(See min_quad_with_fixed for the documentation.)igl_Qu8mg5v7";
  625. const char *__doc_igl_n_polyvector = R"igl_Qu8mg5v7(// Inputs:
  626. // v0, v1 the two #3 by 1 vectors
  627. // normalized boolean, if false, then the vectors are normalized prior to the calculation
  628. // Output:
  629. // 3 by 3 rotation matrix that takes v0 to v1
  630. //)igl_Qu8mg5v7";
  631. const char *__doc_igl_parula = R"igl_Qu8mg5v7(// PARULA like MATLAB's parula
  632. //
  633. // Inputs:
  634. // m number of colors
  635. // Outputs:
  636. // J m by list of RGB colors between 0 and 1
  637. //
  638. // Wrapper for directly computing [r,g,b] values for a given factor f between
  639. // 0 and 1
  640. //
  641. // Inputs:
  642. // f factor determining color value as if 0 was min and 1 was max
  643. // Outputs:
  644. // r red value
  645. // g green value
  646. // b blue value)igl_Qu8mg5v7";
  647. const char *__doc_igl_per_corner_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  648. // Inputs:
  649. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  650. // F #F by 3 eigne Matrix of face (triangle) indices
  651. // corner_threshold threshold in degrees on sharp angles
  652. // Output:
  653. // CN #F*3 by 3 eigen Matrix of mesh vertex 3D normals, where the normal
  654. // for corner F(i,j) is at CN(i*3+j,:) )igl_Qu8mg5v7";
  655. const char *__doc_igl_per_edge_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  656. // Inputs:
  657. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  658. // F #F by 3 eigen Matrix of face (triangle) indices
  659. // weight weighting type
  660. // FN #F by 3 matrix of 3D face normals per face
  661. // Output:
  662. // N #2 by 3 matrix of mesh edge 3D normals per row
  663. // E #E by 2 matrix of edge indices per row
  664. // EMAP #E by 1 matrix of indices from all edges to E
  665. //)igl_Qu8mg5v7";
  666. const char *__doc_igl_per_face_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  667. // Inputs:
  668. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  669. // F #F by 3 eigen Matrix of face (triangle) indices
  670. // Z 3 vector normal given to faces with degenerate normal.
  671. // Output:
  672. // N #F by 3 eigen Matrix of mesh face (triangle) 3D normals
  673. //
  674. // Example:
  675. // // Give degenerate faces (1/3,1/3,1/3)^0.5
  676. // per_face_normals(V,F,Vector3d(1,1,1).normalized(),N);)igl_Qu8mg5v7";
  677. const char *__doc_igl_per_face_normals_stable = R"igl_Qu8mg5v7(// Special version where order of face indices is guaranteed not to effect
  678. // output.)igl_Qu8mg5v7";
  679. const char *__doc_igl_per_vertex_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  680. // Inputs:
  681. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  682. // F #F by 3 eigne Matrix of face (triangle) indices
  683. // weighting Weighting type
  684. // Output:
  685. // N #V by 3 eigen Matrix of mesh vertex 3D normals)igl_Qu8mg5v7";
  686. const char *__doc_igl_planarize_quad_mesh = R"igl_Qu8mg5v7(// Inputs:
  687. // Vin #V by 3 eigen Matrix of mesh vertex 3D positions
  688. // F #F by 4 eigen Matrix of face (quad) indices
  689. // maxIter maximum numbers of iterations
  690. // threshold minimum allowed threshold for non-planarity
  691. // Output:
  692. // Vout #V by 3 eigen Matrix of planar mesh vertex 3D positions
  693. //)igl_Qu8mg5v7";
  694. const char *__doc_igl_png_readPNG = R"igl_Qu8mg5v7(// Read an image from a .png file into 4 memory buffers
  695. //
  696. // Input:
  697. // png_file path to .png file
  698. // Output:
  699. // R,G,B,A texture channels
  700. // Returns true on success, false on failure
  701. //)igl_Qu8mg5v7";
  702. const char *__doc_igl_png_writePNG = R"igl_Qu8mg5v7(// Writes an image to a png file
  703. //
  704. // Input:
  705. // R,G,B,A texture channels
  706. // Output:
  707. // png_file path to .png file
  708. // Returns true on success, false on failure
  709. //)igl_Qu8mg5v7";
  710. const char *__doc_igl_point_mesh_squared_distance = R"igl_Qu8mg5v7(// Compute distances from a set of points P to a triangle mesh (V,F)
  711. //
  712. // Inputs:
  713. // P #P by 3 list of query point positions
  714. // V #V by 3 list of vertex positions
  715. // Ele #Ele by (3|2|1) list of (triangle|edge|point) indices
  716. // Outputs:
  717. // sqrD #P list of smallest squared distances
  718. // I #P list of primitive indices corresponding to smallest distances
  719. // C #P by 3 list of closest points
  720. //
  721. // Known bugs: This only computes distances to given primitivess. So
  722. // unreferenced vertices are ignored. However, degenerate primitives are
  723. // handled correctly: triangle [1 2 2] is treated as a segment [1 2], and
  724. // triangle [1 1 1] is treated as a point. So one _could_ add extra
  725. // combinatorially degenerate rows to Ele for all unreferenced vertices to
  726. // also get distances to points.)igl_Qu8mg5v7";
  727. const char *__doc_igl_polar_svd = R"igl_Qu8mg5v7(// Computes the polar decomposition (R,T) of a matrix A using SVD singular
  728. // value decomposition
  729. //
  730. // Inputs:
  731. // A 3 by 3 matrix to be decomposed
  732. // Outputs:
  733. // R 3 by 3 rotation matrix part of decomposition (**always rotataion**)
  734. // T 3 by 3 stretch matrix part of decomposition
  735. // U 3 by 3 left-singular vectors
  736. // S 3 by 1 singular values
  737. // V 3 by 3 right-singular vectors
  738. //
  739. //)igl_Qu8mg5v7";
  740. const char *__doc_igl_principal_curvature = R"igl_Qu8mg5v7(// Compute the principal curvature directions and magnitude of the given triangle mesh
  741. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  742. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  743. // Inputs:
  744. // V eigen matrix #V by 3
  745. // F #F by 3 list of mesh faces (must be triangles)
  746. // radius controls the size of the neighbourhood used, 1 = average edge lenght
  747. //
  748. // Outputs:
  749. // PD1 #V by 3 maximal curvature direction for each vertex.
  750. // PD2 #V by 3 minimal curvature direction for each vertex.
  751. // PV1 #V by 1 maximal curvature value for each vertex.
  752. // PV2 #V by 1 minimal curvature value for each vertex.
  753. //
  754. // See also: average_onto_faces, average_onto_vertices
  755. //
  756. // This function has been developed by: Nikolas De Giorgis, Luigi Rocca and Enrico Puppo.
  757. // The algorithm is based on:
  758. // Efficient Multi-scale Curvature and Crease Estimation
  759. // Daniele Panozzo, Enrico Puppo, Luigi Rocca
  760. // GraVisMa, 2010)igl_Qu8mg5v7";
  761. const char *__doc_igl_quad_planarity = R"igl_Qu8mg5v7(// Compute planarity of the faces of a quad mesh
  762. // Inputs:
  763. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  764. // F #F by 4 eigen Matrix of face (quad) indices
  765. // Output:
  766. // P #F by 1 eigen Matrix of mesh face (quad) planarities
  767. //)igl_Qu8mg5v7";
  768. const char *__doc_igl_randperm = R"igl_Qu8mg5v7(// Like matlab's randperm(n) but minus 1
  769. //
  770. // Inputs:
  771. // n number of elements
  772. // Outputs:
  773. // I n list of rand permutation of 0:n-1)igl_Qu8mg5v7";
  774. const char *__doc_igl_readDMAT = R"igl_Qu8mg5v7(See readDMAT for the documentation.)igl_Qu8mg5v7";
  775. const char *__doc_igl_readMESH = R"igl_Qu8mg5v7(// load a tetrahedral volume mesh from a .mesh file
  776. //
  777. // Templates:
  778. // Scalar type for positions and vectors (will be read as double and cast
  779. // to Scalar)
  780. // Index type for indices (will be read as int and cast to Index)
  781. // Input:
  782. // mesh_file_name path of .mesh file
  783. // Outputs:
  784. // V double matrix of vertex positions #V by 3
  785. // T #T list of tet indices into vertex positions
  786. // F #F list of face indices into vertex positions
  787. //
  788. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  789. const char *__doc_igl_readOBJ = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  790. // and texture coordinates. Mesh may have faces of any number of degree
  791. //
  792. // Templates:
  793. // Scalar type for positions and vectors (will be read as double and cast
  794. // to Scalar)
  795. // Index type for indices (will be read as int and cast to Index)
  796. // Inputs:
  797. // str path to .obj file
  798. // Outputs:
  799. // V double matrix of vertex positions #V by 3
  800. // TC double matrix of texture coordinats #TC by 2
  801. // N double matrix of corner normals #N by 3
  802. // F #F list of face indices into vertex positions
  803. // FTC #F list of face indices into vertex texture coordinates
  804. // FN #F list of face indices into vertex normals
  805. // Returns true on success, false on errors)igl_Qu8mg5v7";
  806. const char *__doc_igl_readOFF = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  807. // and texture coordinates. Mesh may have faces of any number of degree
  808. //
  809. // Templates:
  810. // Scalar type for positions and vectors (will be read as double and cast
  811. // to Scalar)
  812. // Index type for indices (will be read as int and cast to Index)
  813. // Inputs:
  814. // str path to .obj file
  815. // Outputs:
  816. // V double matrix of vertex positions #V by 3
  817. // F #F list of face indices into vertex positions
  818. // TC double matrix of texture coordinats #TC by 2
  819. // FTC #F list of face indices into vertex texture coordinates
  820. // N double matrix of corner normals #N by 3
  821. // FN #F list of face indices into vertex normals
  822. // Returns true on success, false on errors)igl_Qu8mg5v7";
  823. const char *__doc_igl_read_triangle_mesh = R"igl_Qu8mg5v7(// read mesh from an ascii file with automatic detection of file format.
  824. // supported: obj, off, stl, wrl, ply, mesh)
  825. //
  826. // Templates:
  827. // Scalar type for positions and vectors (will be read as double and cast
  828. // to Scalar)
  829. // Index type for indices (will be read as int and cast to Index)
  830. // Inputs:
  831. // str path to file
  832. // Outputs:
  833. // V eigen double matrix #V by 3
  834. // F eigen int matrix #F by 3
  835. // Returns true iff success)igl_Qu8mg5v7";
  836. const char *__doc_igl_rotate_vectors = R"igl_Qu8mg5v7(// Rotate the vectors V by A radiants on the tangent plane spanned by B1 and
  837. // B2
  838. //
  839. // Inputs:
  840. // V #V by 3 eigen Matrix of vectors
  841. // A #V eigen vector of rotation angles or a single angle to be applied
  842. // to all vectors
  843. // B1 #V by 3 eigen Matrix of base vector 1
  844. // B2 #V by 3 eigen Matrix of base vector 2
  845. //
  846. // Output:
  847. // Returns the rotated vectors
  848. //)igl_Qu8mg5v7";
  849. const char *__doc_igl_setdiff = R"igl_Qu8mg5v7(// Set difference of elements of matrices
  850. //
  851. // Inputs:
  852. // A m-long vector of indices
  853. // B n-long vector of indices
  854. // Outputs:
  855. // C (k<=m)-long vector of unique elements appearing in A but not in B
  856. // IA (k<=m)-long list of indices into A so that C = A(IA)
  857. //)igl_Qu8mg5v7";
  858. const char *__doc_igl_signed_distance = R"igl_Qu8mg5v7(// Computes signed distance to a mesh
  859. //
  860. // Inputs:
  861. // P #P by 3 list of query point positions
  862. // V #V by 3 list of vertex positions
  863. // F #F by ss list of triangle indices, ss should be 3 unless sign_type ==
  864. // SIGNED_DISTANCE_TYPE_UNSIGNED
  865. // sign_type method for computing distance _sign_ S
  866. // Outputs:
  867. // S #P list of smallest signed distances
  868. // I #P list of facet indices corresponding to smallest distances
  869. // C #P by 3 list of closest points
  870. // N #P by 3 list of closest normals (only set if
  871. // sign_type=SIGNED_DISTANCE_TYPE_PSEUDONORMAL)
  872. //
  873. // Known bugs: This only computes distances to triangles. So unreferenced
  874. // vertices and degenerate triangles are ignored.)igl_Qu8mg5v7";
  875. const char *__doc_igl_signed_distance_pseudonormal = R"igl_Qu8mg5v7(// Computes signed distance to mesh
  876. //
  877. // Inputs:
  878. // tree AABB acceleration tree (see AABB.h)
  879. // F #F by 3 list of triangle indices
  880. // FN #F by 3 list of triangle normals
  881. // VN #V by 3 list of vertex normals (ANGLE WEIGHTING)
  882. // EN #E by 3 list of edge normals (UNIFORM WEIGHTING)
  883. // EMAP #F*3 mapping edges in F to E
  884. // q Query point
  885. // Returns signed distance to mesh
  886. //)igl_Qu8mg5v7";
  887. const char *__doc_igl_signed_distance_winding_number = R"igl_Qu8mg5v7(// Inputs:
  888. // tree AABB acceleration tree (see cgal/point_mesh_squared_distance.h)
  889. // hier Winding number evaluation hierarchy
  890. // q Query point
  891. // Returns signed distance to mesh)igl_Qu8mg5v7";
  892. const char *__doc_igl_slice = R"igl_Qu8mg5v7(// Act like the matlab X(row_indices,col_indices) operator, where
  893. // row_indices, col_indices are non-negative integer indices.
  894. //
  895. // Inputs:
  896. // X m by n matrix
  897. // R list of row indices
  898. // C list of column indices
  899. // Output:
  900. // Y #R by #C matrix
  901. //
  902. // See also: slice_mask)igl_Qu8mg5v7";
  903. const char *__doc_igl_slice_into = R"igl_Qu8mg5v7(// Act like the matlab Y(row_indices,col_indices) = X
  904. //
  905. // Inputs:
  906. // X xm by xn rhs matrix
  907. // R list of row indices
  908. // C list of column indices
  909. // Y ym by yn lhs matrix
  910. // Output:
  911. // Y ym by yn lhs matrix, same as input but Y(R,C) = X)igl_Qu8mg5v7";
  912. const char *__doc_igl_slice_mask = R"igl_Qu8mg5v7(// Act like the matlab X(row_mask,col_mask) operator, where
  913. // row_mask, col_mask are non-negative integer indices.
  914. //
  915. // Inputs:
  916. // X m by n matrix
  917. // R m list of row bools
  918. // C n list of column bools
  919. // Output:
  920. // Y #trues-in-R by #trues-in-C matrix
  921. //
  922. // See also: slice_mask)igl_Qu8mg5v7";
  923. const char *__doc_igl_slice_tets = R"igl_Qu8mg5v7(// SLICE_TETS Slice through a tet mesh (V,T) along a given plane (via its
  924. // implicit equation).
  925. //
  926. // Inputs:
  927. // V #V by 3 list of tet mesh vertices
  928. // T #T by 4 list of tet indices into V
  929. // plane list of 4 coefficients in the plane equation: [x y z 1]'*plane = 0
  930. // Optional:
  931. // 'Manifold' followed by whether to stitch together triangles into a
  932. // manifold mesh {true}: results in more compact U but slightly slower.
  933. // Outputs:
  934. // U #U by 3 list of triangle mesh vertices along slice
  935. // G #G by 3 list of triangles indices into U
  936. // J #G list of indices into T revealing from which tet each faces comes
  937. // BC #U by #V list of barycentric coordinates (or more generally: linear
  938. // interpolation coordinates) so that U = BC*V
  939. // )igl_Qu8mg5v7";
  940. const char *__doc_igl_sortrows = R"igl_Qu8mg5v7(// Act like matlab's [Y,I] = sortrows(X)
  941. //
  942. // Templates:
  943. // DerivedX derived scalar type, e.g. MatrixXi or MatrixXd
  944. // DerivedI derived integer type, e.g. MatrixXi
  945. // Inputs:
  946. // X m by n matrix whose entries are to be sorted
  947. // ascending sort ascending (true, matlab default) or descending (false)
  948. // Outputs:
  949. // Y m by n matrix whose entries are sorted (**should not** be same
  950. // reference as X)
  951. // I m list of indices so that
  952. // Y = X(I,:);)igl_Qu8mg5v7";
  953. const char *__doc_igl_triangle_triangulate = R"igl_Qu8mg5v7(// Triangulate the interior of a polygon using the triangle library.
  954. //
  955. // Inputs:
  956. // V #V by 2 list of 2D vertex positions
  957. // E #E by 2 list of vertex ids forming unoriented edges of the boundary of the polygon
  958. // H #H by 2 coordinates of points contained inside holes of the polygon
  959. // flags string of options pass to triangle (see triangle documentation)
  960. // Outputs:
  961. // V2 #V2 by 2 coordinates of the vertives of the generated triangulation
  962. // F2 #F2 by 3 list of indices forming the faces of the generated triangulation
  963. //
  964. // TODO: expose the option to prevent Steiner points on the boundary
  965. //)igl_Qu8mg5v7";
  966. const char *__doc_igl_unique = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X)
  967. //
  968. // Templates:
  969. // T comparable type T
  970. // Inputs:
  971. // A #A vector of type T
  972. // Outputs:
  973. // C #C vector of unique entries in A
  974. // IA #C index vector so that C = A(IA);
  975. // IC #A index vector so that A = C(IC);)igl_Qu8mg5v7";
  976. const char *__doc_igl_unique_rows = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X,'rows')
  977. //
  978. // Templates:
  979. // DerivedA derived scalar type, e.g. MatrixXi or MatrixXd
  980. // DerivedIA derived integer type, e.g. MatrixXi
  981. // DerivedIC derived integer type, e.g. MatrixXi
  982. // Inputs:
  983. // A m by n matrix whose entries are to unique'd according to rows
  984. // Outputs:
  985. // C #C vector of unique rows in A
  986. // IA #C index vector so that C = A(IA,:);
  987. // IC #A index vector so that A = C(IC,:);)igl_Qu8mg5v7";
  988. const char *__doc_igl_unproject_onto_mesh = R"igl_Qu8mg5v7(// Unproject a screen location (using current opengl viewport, projection, and
  989. // model view) to a 3D position _onto_ a given mesh, if the ray through the
  990. // given screen location (x,y) _hits_ the mesh.
  991. //
  992. // Inputs:
  993. // pos screen space coordinates
  994. // model model matrix
  995. // proj projection matrix
  996. // viewport vieweport vector
  997. // V #V by 3 list of mesh vertex positions
  998. // F #F by 3 list of mesh triangle indices into V
  999. // Outputs:
  1000. // fid id of the first face hit
  1001. // bc barycentric coordinates of hit
  1002. // Returns true if there's a hit)igl_Qu8mg5v7";
  1003. const char *__doc_igl_upsample = R"igl_Qu8mg5v7(// Subdivide a mesh without moving vertices: loop subdivision but odd
  1004. // vertices stay put and even vertices are just edge midpoints
  1005. //
  1006. // Templates:
  1007. // MatV matrix for vertex positions, e.g. MatrixXd
  1008. // MatF matrix for vertex positions, e.g. MatrixXi
  1009. // Inputs:
  1010. // V #V by dim mesh vertices
  1011. // F #F by 3 mesh triangles
  1012. // Outputs:
  1013. // NV new vertex positions, V is guaranteed to be at top
  1014. // NF new list of face indices
  1015. //
  1016. // NOTE: V should not be the same as NV,
  1017. // NOTE: F should not be the same as NF, use other proto
  1018. //
  1019. // Known issues:
  1020. // - assumes (V,F) is edge-manifold.)igl_Qu8mg5v7";
  1021. const char *__doc_igl_winding_number = R"igl_Qu8mg5v7(// WINDING_NUMBER Compute the sum of solid angles of a triangle/tetrahedron
  1022. // described by points (vectors) V
  1023. //
  1024. // Templates:
  1025. // dim dimension of input
  1026. // Inputs:
  1027. // V n by 3 list of vertex positions
  1028. // F #F by 3 list of triangle indices, minimum index is 0
  1029. // O no by 3 list of origin positions
  1030. // Outputs:
  1031. // S no by 1 list of winding numbers
  1032. //
  1033. // 3d)igl_Qu8mg5v7";
  1034. const char *__doc_igl_winding_number_3 = R"igl_Qu8mg5v7(// Inputs:
  1035. // V pointer to array containing #V by 3 vertex positions along rows,
  1036. // given in column major order
  1037. // n number of mesh vertices
  1038. // F pointer to array containing #F by 3 face indices along rows,
  1039. // given in column major order
  1040. // m number of faces
  1041. // O pointer to array containing #O by 3 query positions along rows,
  1042. // given in column major order
  1043. // no number of origins
  1044. // Outputs:
  1045. // S no by 1 list of winding numbers)igl_Qu8mg5v7";
  1046. const char *__doc_igl_winding_number_2 = R"igl_Qu8mg5v7(//// Only one evaluation origin
  1047. //template <typename DerivedF>
  1048. //IGL_INLINE void winding_number_3(
  1049. // const double * V,
  1050. // const int n,
  1051. // const DerivedF * F,
  1052. // const int m,
  1053. // const double * O,
  1054. // double * S);
  1055. // 2d)igl_Qu8mg5v7";
  1056. const char *__doc_igl_writeMESH = R"igl_Qu8mg5v7(// save a tetrahedral volume mesh to a .mesh file
  1057. //
  1058. // Templates:
  1059. // Scalar type for positions and vectors (will be cast as double)
  1060. // Index type for indices (will be cast to int)
  1061. // Input:
  1062. // mesh_file_name path of .mesh file
  1063. // V double matrix of vertex positions #V by 3
  1064. // T #T list of tet indices into vertex positions
  1065. // F #F list of face indices into vertex positions
  1066. //
  1067. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  1068. const char *__doc_igl_writeOBJ = R"igl_Qu8mg5v7(// Write a mesh in an ascii obj file
  1069. // Inputs:
  1070. // str path to outputfile
  1071. // V #V by 3 mesh vertex positions
  1072. // F #F by 3|4 mesh indices into V
  1073. // CN #CN by 3 normal vectors
  1074. // FN #F by 3|4 corner normal indices into CN
  1075. // TC #TC by 2|3 texture coordinates
  1076. // FTC #F by 3|4 corner texture coord indices into TC
  1077. // Returns true on success, false on error)igl_Qu8mg5v7";