order_facets_around_edge.cpp 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
  1. #include "order_facets_around_edge.h"
  2. namespace igl {
  3. namespace cgal {
  4. namespace order_facets_around_edges_helper {
  5. template<typename T>
  6. std::vector<size_t> index_sort(const std::vector<T>& data) {
  7. const size_t len = data.size();
  8. std::vector<size_t> order(len);
  9. for (size_t i=0; i<len; i++) order[i] = i;
  10. auto comp = [&](size_t i, size_t j) {
  11. return data[i] < data[j];
  12. };
  13. std::sort(order.begin(), order.end(), comp);
  14. return order;
  15. }
  16. }
  17. }
  18. }
  19. // adj_faces contains signed index starting from +- 1.
  20. template<
  21. typename DerivedV,
  22. typename DerivedF,
  23. typename DerivedI >
  24. void igl::cgal::order_facets_around_edge(
  25. const Eigen::PlainObjectBase<DerivedV>& V,
  26. const Eigen::PlainObjectBase<DerivedF>& F,
  27. size_t s, size_t d,
  28. const std::vector<int>& adj_faces,
  29. Eigen::PlainObjectBase<DerivedI>& order) {
  30. using namespace igl::cgal::order_facets_around_edges_helper;
  31. // Although we only need exact predicates in the algorithm,
  32. // exact constructions are needed to avoid degeneracies due to
  33. // casting to double.
  34. typedef CGAL::Exact_predicates_exact_constructions_kernel K;
  35. typedef K::Point_3 Point_3;
  36. typedef K::Plane_3 Plane_3;
  37. auto get_face_index = [&](int adj_f)->size_t{
  38. return abs(adj_f) - 1;
  39. };
  40. auto get_opposite_vertex = [&](size_t fid)->size_t {
  41. if (F(fid, 0) != s && F(fid, 0) != d) return F(fid, 0);
  42. if (F(fid, 1) != s && F(fid, 1) != d) return F(fid, 1);
  43. if (F(fid, 2) != s && F(fid, 2) != d) return F(fid, 2);
  44. assert(false);
  45. return -1;
  46. };
  47. // Handle base cases
  48. if (adj_faces.size() == 0) {
  49. order.resize(0);
  50. return;
  51. } else if (adj_faces.size() == 1) {
  52. order.resize(1);
  53. order[0] = 0;
  54. return;
  55. } else if (adj_faces.size() == 2) {
  56. const size_t o1 =
  57. get_opposite_vertex(get_face_index(adj_faces[0]));
  58. const size_t o2 =
  59. get_opposite_vertex(get_face_index(adj_faces[1]));
  60. const Point_3 ps(V(s, 0), V(s, 1), V(s, 2));
  61. const Point_3 pd(V(d, 0), V(d, 1), V(d, 2));
  62. const Point_3 p1(V(o1, 0), V(o1, 1), V(o1, 2));
  63. const Point_3 p2(V(o2, 0), V(o2, 1), V(o2, 2));
  64. order.resize(2);
  65. switch (CGAL::orientation(ps, pd, p1, p2)) {
  66. case CGAL::POSITIVE:
  67. order[0] = 1;
  68. order[1] = 0;
  69. break;
  70. case CGAL::NEGATIVE:
  71. order[0] = 0;
  72. order[1] = 1;
  73. break;
  74. case CGAL::COPLANAR:
  75. order[0] = adj_faces[0] < adj_faces[1] ? 0:1;
  76. order[1] = adj_faces[0] < adj_faces[1] ? 1:0;
  77. break;
  78. default:
  79. assert(false);
  80. }
  81. return;
  82. }
  83. const size_t num_adj_faces = adj_faces.size();
  84. const size_t o = get_opposite_vertex(
  85. get_face_index(adj_faces[0]));
  86. const Point_3 p_s(V(s, 0), V(s, 1), V(s, 2));
  87. const Point_3 p_d(V(d, 0), V(d, 1), V(d, 2));
  88. const Point_3 p_o(V(o, 0), V(o, 1), V(o, 2));
  89. const Plane_3 separator(p_s, p_d, p_o);
  90. assert(!separator.is_degenerate());
  91. std::vector<Point_3> opposite_vertices;
  92. for (size_t i=0; i<num_adj_faces; i++) {
  93. const size_t o = get_opposite_vertex(
  94. get_face_index(adj_faces[i]));
  95. opposite_vertices.emplace_back(
  96. V(o, 0), V(o, 1), V(o, 2));
  97. }
  98. std::vector<int> positive_side;
  99. std::vector<int> negative_side;
  100. std::vector<int> tie_positive_oriented;
  101. std::vector<int> tie_negative_oriented;
  102. std::vector<size_t> positive_side_index;
  103. std::vector<size_t> negative_side_index;
  104. std::vector<size_t> tie_positive_oriented_index;
  105. std::vector<size_t> tie_negative_oriented_index;
  106. for (size_t i=0; i<num_adj_faces; i++) {
  107. const int f = adj_faces[i];
  108. const Point_3& p_a = opposite_vertices[i];
  109. auto orientation = separator.oriented_side(p_a);
  110. switch (orientation) {
  111. case CGAL::ON_POSITIVE_SIDE:
  112. positive_side.push_back(f);
  113. positive_side_index.push_back(i);
  114. break;
  115. case CGAL::ON_NEGATIVE_SIDE:
  116. negative_side.push_back(f);
  117. negative_side_index.push_back(i);
  118. break;
  119. case CGAL::ON_ORIENTED_BOUNDARY:
  120. {
  121. const Plane_3 other(p_s, p_d, p_a);
  122. const auto target_dir = separator.orthogonal_direction();
  123. const auto query_dir = other.orthogonal_direction();
  124. if (target_dir == query_dir) {
  125. tie_positive_oriented.push_back(f);
  126. tie_positive_oriented_index.push_back(i);
  127. } else if (target_dir == -query_dir) {
  128. tie_negative_oriented.push_back(f);
  129. tie_negative_oriented_index.push_back(i);
  130. } else {
  131. assert(false);
  132. }
  133. }
  134. break;
  135. default:
  136. // Should not be here.
  137. assert(false);
  138. }
  139. }
  140. Eigen::PlainObjectBase<DerivedI> positive_order, negative_order;
  141. order_facets_around_edge(V, F, s, d, positive_side, positive_order);
  142. order_facets_around_edge(V, F, s, d, negative_side, negative_order);
  143. std::vector<size_t> tie_positive_order =
  144. index_sort(tie_positive_oriented);
  145. std::vector<size_t> tie_negative_order =
  146. index_sort(tie_negative_oriented);
  147. // Copy results into order vector.
  148. const size_t tie_positive_size = tie_positive_oriented.size();
  149. const size_t tie_negative_size = tie_negative_oriented.size();
  150. const size_t positive_size = positive_order.size();
  151. const size_t negative_size = negative_order.size();
  152. order.resize(tie_positive_size + positive_size +
  153. tie_negative_size + negative_size);
  154. size_t count=0;
  155. for (size_t i=0; i<tie_positive_size; i++) {
  156. order[count+i] =
  157. tie_positive_oriented_index[tie_positive_order[i]];
  158. }
  159. count += tie_positive_size;
  160. for (size_t i=0; i<negative_size; i++) {
  161. order[count+i] = negative_side_index[negative_order[i]];
  162. }
  163. count += negative_size;
  164. for (size_t i=0; i<tie_negative_size; i++) {
  165. order[count+i] =
  166. tie_negative_oriented_index[tie_negative_order[i]];
  167. }
  168. count += tie_negative_size;
  169. for (size_t i=0; i<positive_size; i++) {
  170. order[count+i] = positive_side_index[positive_order[i]];
  171. }
  172. count += positive_size;
  173. assert(count == num_adj_faces);
  174. // Find the correct start point.
  175. size_t start_idx = 0;
  176. for (size_t i=0; i<num_adj_faces; i++) {
  177. const Point_3& p_a = opposite_vertices[order[i]];
  178. const Point_3& p_b =
  179. opposite_vertices[order[(i+1)%num_adj_faces]];
  180. if (CGAL::orientation(p_s, p_d, p_a, p_b) == CGAL::POSITIVE) {
  181. start_idx = (i+1)%num_adj_faces;
  182. break;
  183. }
  184. }
  185. DerivedI circular_order = order;
  186. for (size_t i=0; i<num_adj_faces; i++) {
  187. order[i] = circular_order[(start_idx + i)%num_adj_faces];
  188. }
  189. }