min_quad_dense.cpp 2.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889
  1. #include "min_quad_dense.h"
  2. #include <Eigen/Core>
  3. #include <Eigen/LU>
  4. #include "EPS.h"
  5. template <typename T>
  6. IGL_INLINE void igl::min_quad_dense_precompute(
  7. const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& A,
  8. const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& Aeq,
  9. const bool use_lu_decomposition,
  10. Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& S)
  11. {
  12. typedef Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> Mat;
  13. // This threshold seems to matter a lot but I'm not sure how to
  14. // set it
  15. const T treshold = igl::FLOAT_EPS;
  16. //const T treshold = igl::DOUBLE_EPS;
  17. const int n = A.rows();
  18. assert(A.cols() == n);
  19. const int m = Aeq.rows();
  20. assert(Aeq.cols() == n);
  21. // Lagrange multipliers method:
  22. Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> LM(n + m, n + m);
  23. LM.block(0, 0, n, n) = A;
  24. LM.block(0, n, n, m) = Aeq.transpose();
  25. LM.block(n, 0, m, n) = Aeq;
  26. LM.block(n, n, m, m).setZero();
  27. Mat LMpinv;
  28. if(use_lu_decomposition)
  29. {
  30. // if LM is close to singular, use at your own risk :)
  31. LMpinv = LM.inverse();
  32. }else
  33. {
  34. // use SVD
  35. typedef Eigen::Matrix<T, Eigen::Dynamic, 1> Vec;
  36. Vec singValues;
  37. Eigen::JacobiSVD<Mat> svd;
  38. svd.compute(LM, Eigen::ComputeFullU | Eigen::ComputeFullV );
  39. const Mat& u = svd.matrixU();
  40. const Mat& v = svd.matrixV();
  41. const Vec& singVals = svd.singularValues();
  42. Vec pi_singVals(n + m);
  43. int zeroed = 0;
  44. for (int i=0; i<n + m; i++)
  45. {
  46. T sv = singVals(i, 0);
  47. assert(sv >= 0);
  48. // printf("sv: %lg ? %lg\n",(double) sv,(double)treshold);
  49. if (sv > treshold) pi_singVals(i, 0) = T(1) / sv;
  50. else
  51. {
  52. pi_singVals(i, 0) = T(0);
  53. zeroed++;
  54. }
  55. }
  56. printf("min_quad_dense_precompute: %i singular values zeroed (threshold = %e)\n", zeroed, treshold);
  57. Eigen::DiagonalMatrix<T, Eigen::Dynamic> pi_diag(pi_singVals);
  58. LMpinv = v * pi_diag * u.transpose();
  59. }
  60. S = LMpinv.block(0, 0, n, n + m);
  61. //// debug:
  62. //mlinit(&g_pEngine);
  63. //
  64. //mlsetmatrix(&g_pEngine, "A", A);
  65. //mlsetmatrix(&g_pEngine, "Aeq", Aeq);
  66. //mlsetmatrix(&g_pEngine, "LM", LM);
  67. //mlsetmatrix(&g_pEngine, "u", u);
  68. //mlsetmatrix(&g_pEngine, "v", v);
  69. //MatrixXd svMat = singVals;
  70. //mlsetmatrix(&g_pEngine, "singVals", svMat);
  71. //mlsetmatrix(&g_pEngine, "LMpinv", LMpinv);
  72. //mlsetmatrix(&g_pEngine, "S", S);
  73. //int hu = 1;
  74. }
  75. #ifndef IGL_HEADER_ONLY
  76. // Explicit template specialization
  77. template void igl::min_quad_dense_precompute<double>(Eigen::Matrix<double, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, -1, -1, 0, -1, -1> const&, bool, Eigen::Matrix<double, -1, -1, 0, -1, -1>&);
  78. #endif