123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "grad.h"
- #include <Eigen/Geometry>
- #include <vector>
- #include "PI.h"
- #include "per_face_normals.h"
- #include "volume.h"
- #include "doublearea.h"
- namespace igl {
- namespace {
- template <typename DerivedV, typename DerivedF>
- IGL_INLINE void grad_tet(
- const Eigen::MatrixBase<DerivedV>&V,
- const Eigen::MatrixBase<DerivedF>&T,
- Eigen::SparseMatrix<typename DerivedV::Scalar> &G,
- bool uniform)
- {
- using namespace Eigen;
- assert(T.cols() == 4);
- const int n = V.rows(); int m = T.rows();
- /*
- F = [ ...
- T(:,1) T(:,2) T(:,3); ...
- T(:,1) T(:,3) T(:,4); ...
- T(:,1) T(:,4) T(:,2); ...
- T(:,2) T(:,4) T(:,3)]; */
- MatrixXi F(4*m,3);
- for (int i = 0; i < m; i++) {
- F.row(0*m + i) << T(i,0), T(i,1), T(i,2);
- F.row(1*m + i) << T(i,0), T(i,2), T(i,3);
- F.row(2*m + i) << T(i,0), T(i,3), T(i,1);
- F.row(3*m + i) << T(i,1), T(i,3), T(i,2);
- }
- // compute volume of each tet
- Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 1> vol;
- igl::volume(V,T,vol);
- Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 1> A(F.rows());
- Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, Eigen::Dynamic> N(F.rows(),3);
- if (!uniform) {
- // compute tetrahedron face normals
- igl::per_face_normals(V,F,N); int norm_rows = N.rows();
- for (int i = 0; i < norm_rows; i++)
- N.row(i) /= N.row(i).norm();
- igl::doublearea(V,F,A); A/=2.;
- } else {
- // Use a uniform tetrahedra as a reference, with the same volume as the original one:
- //
- // Use normals of the uniform tet (V = h*[0,0,0;1,0,0;0.5,sqrt(3)/2.,0;0.5,sqrt(3)/6.,sqrt(2)/sqrt(3)])
- // 0 0 1.0000
- // 0.8165 -0.4714 -0.3333
- // 0 0.9428 -0.3333
- // -0.8165 -0.4714 -0.3333
- for (int i = 0; i < m; i++) {
- N.row(0*m+i) << 0,0,1;
- double a = sqrt(2)*std::cbrt(3*vol(i)); // area of a face in a uniform tet with volume = vol(i)
- A(0*m+i) = (pow(a,2)*sqrt(3))/4.;
- }
- for (int i = 0; i < m; i++) {
- N.row(1*m+i) << 0.8165,-0.4714,-0.3333;
- double a = sqrt(2)*std::cbrt(3*vol(i));
- A(1*m+i) = (pow(a,2)*sqrt(3))/4.;
- }
- for (int i = 0; i < m; i++) {
- N.row(2*m+i) << 0,0.9428,-0.3333;
- double a = sqrt(2)*std::cbrt(3*vol(i));
- A(2*m+i) = (pow(a,2)*sqrt(3))/4.;
- }
- for (int i = 0; i < m; i++) {
- N.row(3*m+i) << -0.8165,-0.4714,-0.3333;
- double a = sqrt(2)*std::cbrt(3*vol(i));
- A(3*m+i) = (pow(a,2)*sqrt(3))/4.;
- }
- }
- /* G = sparse( ...
- [0*m + repmat(1:m,1,4) ...
- 1*m + repmat(1:m,1,4) ...
- 2*m + repmat(1:m,1,4)], ...
- repmat([T(:,4);T(:,2);T(:,3);T(:,1)],3,1), ...
- repmat(A./(3*repmat(vol,4,1)),3,1).*N(:), ...
- 3*m,n);*/
- std::vector<Triplet<double> > G_t;
- for (int i = 0; i < 4*m; i++) {
- int T_j; // j indexes : repmat([T(:,4);T(:,2);T(:,3);T(:,1)],3,1)
- switch (i/m) {
- case 0:
- T_j = 3;
- break;
- case 1:
- T_j = 1;
- break;
- case 2:
- T_j = 2;
- break;
- case 3:
- T_j = 0;
- break;
- }
- int i_idx = i%m;
- int j_idx = T(i_idx,T_j);
- double val_before_n = A(i)/(3*vol(i_idx));
- G_t.push_back(Triplet<double>(0*m+i_idx, j_idx, val_before_n * N(i,0)));
- G_t.push_back(Triplet<double>(1*m+i_idx, j_idx, val_before_n * N(i,1)));
- G_t.push_back(Triplet<double>(2*m+i_idx, j_idx, val_before_n * N(i,2)));
- }
- G.resize(3*m,n);
- G.setFromTriplets(G_t.begin(), G_t.end());
- }
- template <typename DerivedV, typename DerivedF>
- IGL_INLINE void grad_tri(
- const Eigen::MatrixBase<DerivedV>&V,
- const Eigen::MatrixBase<DerivedF>&F,
- Eigen::SparseMatrix<typename DerivedV::Scalar> &G,
- bool uniform)
- {
- // Number of faces
- const int m = F.rows();
- // Number of vertices
- const int nv = V.rows();
- // Number of dimensions
- const int dims = V.cols();
- Eigen::Matrix<typename DerivedV::Scalar,Eigen::Dynamic,3>
- eperp21(m,3), eperp13(m,3);
- for (int i=0;i<m;++i)
- {
- // renaming indices of vertices of triangles for convenience
- int i1 = F(i,0);
- int i2 = F(i,1);
- int i3 = F(i,2);
- // #F x 3 matrices of triangle edge vectors, named after opposite vertices
- typedef Eigen::Matrix<typename DerivedV::Scalar, 1, 3> RowVector3S;
- RowVector3S v32 = RowVector3S::Zero(1,3);
- RowVector3S v13 = RowVector3S::Zero(1,3);
- RowVector3S v21 = RowVector3S::Zero(1,3);
- v32.head(V.cols()) = V.row(i3) - V.row(i2);
- v13.head(V.cols()) = V.row(i1) - V.row(i3);
- v21.head(V.cols()) = V.row(i2) - V.row(i1);
- RowVector3S n = v32.cross(v13);
- // area of parallelogram is twice area of triangle
- // area of parallelogram is || v1 x v2 ||
- // This does correct l2 norm of rows, so that it contains #F list of twice
- // triangle areas
- double dblA = std::sqrt(n.dot(n));
- Eigen::Matrix<typename DerivedV::Scalar, 1, 3> u(0,0,1);
- if (!uniform) {
- // now normalize normals to get unit normals
- u = n / dblA;
- } else {
- // Abstract equilateral triangle v1=(0,0), v2=(h,0), v3=(h/2, (sqrt(3)/2)*h)
- // get h (by the area of the triangle)
- double h = sqrt( (dblA)/sin(igl::PI / 3.0)); // (h^2*sin(60))/2. = Area => h = sqrt(2*Area/sin_60)
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> v1,v2,v3;
- v1 << 0,0,0;
- v2 << h,0,0;
- v3 << h/2.,(sqrt(3)/2.)*h,0;
- // now fix v32,v13,v21 and the normal
- v32 = v3-v2;
- v13 = v1-v3;
- v21 = v2-v1;
- n = v32.cross(v13);
- }
- // rotate each vector 90 degrees around normal
- double norm21 = std::sqrt(v21.dot(v21));
- double norm13 = std::sqrt(v13.dot(v13));
- eperp21.row(i) = u.cross(v21);
- eperp21.row(i) = eperp21.row(i) / std::sqrt(eperp21.row(i).dot(eperp21.row(i)));
- eperp21.row(i) *= norm21 / dblA;
- eperp13.row(i) = u.cross(v13);
- eperp13.row(i) = eperp13.row(i) / std::sqrt(eperp13.row(i).dot(eperp13.row(i)));
- eperp13.row(i) *= norm13 / dblA;
- }
- // create sparse gradient operator matrix
- G.resize(dims*m,nv);
- std::vector<Eigen::Triplet<typename DerivedV::Scalar> > Gijv;
- Gijv.reserve(4*dims*m);
- for(int f = 0;f<F.rows();f++)
- {
- for(int d = 0;d<dims;d++)
- {
- Gijv.emplace_back(f+d*m,F(f,1), eperp13(f,d));
- Gijv.emplace_back(f+d*m,F(f,0),-eperp13(f,d));
- Gijv.emplace_back(f+d*m,F(f,2), eperp21(f,d));
- Gijv.emplace_back(f+d*m,F(f,0),-eperp21(f,d));
- }
- }
- G.setFromTriplets(Gijv.begin(), Gijv.end());
- }
- } // anonymous namespace
- } // namespace igl
- template <typename DerivedV, typename DerivedF>
- IGL_INLINE void igl::grad(
- const Eigen::MatrixBase<DerivedV>&V,
- const Eigen::MatrixBase<DerivedF>&F,
- Eigen::SparseMatrix<typename DerivedV::Scalar> &G,
- bool uniform)
- {
- assert(F.cols() == 3 || F.cols() == 4);
- switch(F.cols())
- {
- case 3:
- return grad_tri(V,F,G,uniform);
- case 4:
- return grad_tet(V,F,G,uniform);
- default:
- assert(false);
- }
- }
- #ifdef IGL_STATIC_LIBRARY
- // Explicit template instantiation
- // generated by autoexplicit.sh
- template void igl::grad<Eigen::Matrix<double, -1, 2, 0, -1, 2>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, 2, 0, -1, 2> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<Eigen::Matrix<double, -1, 2, 0, -1, 2>::Scalar, 0, int>&, bool);
- template void igl::grad<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<Eigen::Matrix<double, -1, -1, 0, -1, -1>::Scalar, 0, int>&, bool);
- template void igl::grad<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::SparseMatrix<Eigen::Matrix<double, -1, 3, 0, -1, 3>::Scalar, 0, int>&, bool);
- #endif
|