flip_avoiding_line_search.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307
  1. // This file is part of libigl, a simple c++ geometry processing library.
  2. //
  3. // Copyright (C) 2016 Michael Rabinovich
  4. //
  5. // This Source Code Form is subject to the terms of the Mozilla Public License
  6. // v. 2.0. If a copy of the MPL was not distributed with this file, You can
  7. // obtain one at http://mozilla.org/MPL/2.0/.
  8. #include "flip_avoiding_line_search.h"
  9. #include "line_search.h"
  10. #include <Eigen/Dense>
  11. #include <vector>
  12. //---------------------------------------------------------------------------
  13. // x - array of size 3
  14. // In case 3 real roots: => x[0], x[1], x[2], return 3
  15. // 2 real roots: x[0], x[1], return 2
  16. // 1 real root : x[0], x[1] ± i*x[2], return 1
  17. // http://math.ivanovo.ac.ru/dalgebra/Khashin/poly/index.html
  18. int SolveP3(std::vector<double>& x,double a,double b,double c)
  19. { // solve cubic equation x^3 + a*x^2 + b*x + c
  20. using namespace std;
  21. double a2 = a*a;
  22. double q = (a2 - 3*b)/9;
  23. double r = (a*(2*a2-9*b) + 27*c)/54;
  24. double r2 = r*r;
  25. double q3 = q*q*q;
  26. double A,B;
  27. if(r2<q3)
  28. {
  29. double t=r/sqrt(q3);
  30. if( t<-1) t=-1;
  31. if( t> 1) t= 1;
  32. t=acos(t);
  33. a/=3; q=-2*sqrt(q);
  34. x[0]=q*cos(t/3)-a;
  35. x[1]=q*cos((t+(2*M_PI))/3)-a;
  36. x[2]=q*cos((t-(2*M_PI))/3)-a;
  37. return(3);
  38. }
  39. else
  40. {
  41. A =-pow(fabs(r)+sqrt(r2-q3),1./3);
  42. if( r<0 ) A=-A;
  43. B = A==0? 0 : B=q/A;
  44. a/=3;
  45. x[0] =(A+B)-a;
  46. x[1] =-0.5*(A+B)-a;
  47. x[2] = 0.5*sqrt(3.)*(A-B);
  48. if(fabs(x[2])<1e-14)
  49. {
  50. x[2]=x[1]; return(2);
  51. }
  52. return(1);
  53. }
  54. }
  55. double get_smallest_pos_quad_zero(double a,double b, double c)
  56. {
  57. using namespace std;
  58. double t1,t2;
  59. if (a != 0)
  60. {
  61. double delta_in = pow(b,2) - 4*a*c;
  62. if (delta_in < 0)
  63. {
  64. return INFINITY;
  65. }
  66. double delta = sqrt(delta_in);
  67. t1 = (-b + delta)/ (2*a);
  68. t2 = (-b - delta)/ (2*a);
  69. }
  70. else
  71. {
  72. t1 = t2 = -b/c;
  73. }
  74. assert (std::isfinite(t1));
  75. assert (std::isfinite(t2));
  76. double tmp_n = min(t1,t2);
  77. t1 = max(t1,t2); t2 = tmp_n;
  78. if (t1 == t2)
  79. {
  80. return INFINITY; // means the orientation flips twice = doesn't flip
  81. }
  82. // return the smallest negative root if it exists, otherwise return infinity
  83. if (t1 > 0)
  84. {
  85. if (t2 > 0)
  86. {
  87. return t2;
  88. }
  89. else
  90. {
  91. return t1;
  92. }
  93. }
  94. else
  95. {
  96. return INFINITY;
  97. }
  98. }
  99. double get_min_pos_root_2D(const Eigen::MatrixXd& uv,const Eigen::MatrixXi& F,
  100. Eigen::MatrixXd& d, int f)
  101. {
  102. using namespace std;
  103. /*
  104. Finding the smallest timestep t s.t a triangle get degenerated (<=> det = 0)
  105. The following code can be derived by a symbolic expression in matlab:
  106. Symbolic matlab:
  107. U11 = sym('U11');
  108. U12 = sym('U12');
  109. U21 = sym('U21');
  110. U22 = sym('U22');
  111. U31 = sym('U31');
  112. U32 = sym('U32');
  113. V11 = sym('V11');
  114. V12 = sym('V12');
  115. V21 = sym('V21');
  116. V22 = sym('V22');
  117. V31 = sym('V31');
  118. V32 = sym('V32');
  119. t = sym('t');
  120. U1 = [U11,U12];
  121. U2 = [U21,U22];
  122. U3 = [U31,U32];
  123. V1 = [V11,V12];
  124. V2 = [V21,V22];
  125. V3 = [V31,V32];
  126. A = [(U2+V2*t) - (U1+ V1*t)];
  127. B = [(U3+V3*t) - (U1+ V1*t)];
  128. C = [A;B];
  129. solve(det(C), t);
  130. cf = coeffs(det(C),t); % Now cf(1),cf(2),cf(3) holds the coefficients for the polynom. at order c,b,a
  131. */
  132. int v1 = F(f,0); int v2 = F(f,1); int v3 = F(f,2);
  133. // get quadratic coefficients (ax^2 + b^x + c)
  134. const double& U11 = uv(v1,0);
  135. const double& U12 = uv(v1,1);
  136. const double& U21 = uv(v2,0);
  137. const double& U22 = uv(v2,1);
  138. const double& U31 = uv(v3,0);
  139. const double& U32 = uv(v3,1);
  140. const double& V11 = d(v1,0);
  141. const double& V12 = d(v1,1);
  142. const double& V21 = d(v2,0);
  143. const double& V22 = d(v2,1);
  144. const double& V31 = d(v3,0);
  145. const double& V32 = d(v3,1);
  146. double a = V11*V22 - V12*V21 - V11*V32 + V12*V31 + V21*V32 - V22*V31;
  147. double b = U11*V22 - U12*V21 - U21*V12 + U22*V11 - U11*V32 + U12*V31 + U31*V12 - U32*V11 + U21*V32 - U22*V31 - U31*V22 + U32*V21;
  148. double c = U11*U22 - U12*U21 - U11*U32 + U12*U31 + U21*U32 - U22*U31;
  149. return get_smallest_pos_quad_zero(a,b,c);
  150. }
  151. double get_min_pos_root_3D(const Eigen::MatrixXd& uv,const Eigen::MatrixXi& F,
  152. Eigen::MatrixXd& direc, int f)
  153. {
  154. using namespace std;
  155. /*
  156. Searching for the roots of:
  157. +-1/6 * |ax ay az 1|
  158. |bx by bz 1|
  159. |cx cy cz 1|
  160. |dx dy dz 1|
  161. Every point ax,ay,az has a search direction a_dx,a_dy,a_dz, and so we add those to the matrix, and solve the cubic to find the step size t for a 0 volume
  162. Symbolic matlab:
  163. syms a_x a_y a_z a_dx a_dy a_dz % tetrahedera point and search direction
  164. syms b_x b_y b_z b_dx b_dy b_dz
  165. syms c_x c_y c_z c_dx c_dy c_dz
  166. syms d_x d_y d_z d_dx d_dy d_dz
  167. syms t % Timestep var, this is what we're looking for
  168. a_plus_t = [a_x,a_y,a_z] + t*[a_dx,a_dy,a_dz];
  169. b_plus_t = [b_x,b_y,b_z] + t*[b_dx,b_dy,b_dz];
  170. c_plus_t = [c_x,c_y,c_z] + t*[c_dx,c_dy,c_dz];
  171. d_plus_t = [d_x,d_y,d_z] + t*[d_dx,d_dy,d_dz];
  172. vol_mat = [a_plus_t,1;b_plus_t,1;c_plus_t,1;d_plus_t,1]
  173. //cf = coeffs(det(vol_det),t); % Now cf(1),cf(2),cf(3),cf(4) holds the coefficients for the polynom
  174. [coefficients,terms] = coeffs(det(vol_det),t); % terms = [ t^3, t^2, t, 1], Coefficients hold the coeff we seek
  175. */
  176. int v1 = F(f,0); int v2 = F(f,1); int v3 = F(f,2); int v4 = F(f,3);
  177. const double& a_x = uv(v1,0);
  178. const double& a_y = uv(v1,1);
  179. const double& a_z = uv(v1,2);
  180. const double& b_x = uv(v2,0);
  181. const double& b_y = uv(v2,1);
  182. const double& b_z = uv(v2,2);
  183. const double& c_x = uv(v3,0);
  184. const double& c_y = uv(v3,1);
  185. const double& c_z = uv(v3,2);
  186. const double& d_x = uv(v4,0);
  187. const double& d_y = uv(v4,1);
  188. const double& d_z = uv(v4,2);
  189. const double& a_dx = direc(v1,0);
  190. const double& a_dy = direc(v1,1);
  191. const double& a_dz = direc(v1,2);
  192. const double& b_dx = direc(v2,0);
  193. const double& b_dy = direc(v2,1);
  194. const double& b_dz = direc(v2,2);
  195. const double& c_dx = direc(v3,0);
  196. const double& c_dy = direc(v3,1);
  197. const double& c_dz = direc(v3,2);
  198. const double& d_dx = direc(v4,0);
  199. const double& d_dy = direc(v4,1);
  200. const double& d_dz = direc(v4,2);
  201. // Find solution for: a*t^3 + b*t^2 + c*d +d = 0
  202. double a = a_dx*b_dy*c_dz - a_dx*b_dz*c_dy - a_dy*b_dx*c_dz + a_dy*b_dz*c_dx + a_dz*b_dx*c_dy - a_dz*b_dy*c_dx - a_dx*b_dy*d_dz + a_dx*b_dz*d_dy + a_dy*b_dx*d_dz - a_dy*b_dz*d_dx - a_dz*b_dx*d_dy + a_dz*b_dy*d_dx + a_dx*c_dy*d_dz - a_dx*c_dz*d_dy - a_dy*c_dx*d_dz + a_dy*c_dz*d_dx + a_dz*c_dx*d_dy - a_dz*c_dy*d_dx - b_dx*c_dy*d_dz + b_dx*c_dz*d_dy + b_dy*c_dx*d_dz - b_dy*c_dz*d_dx - b_dz*c_dx*d_dy + b_dz*c_dy*d_dx;
  203. double b = a_dy*b_dz*c_x - a_dy*b_x*c_dz - a_dz*b_dy*c_x + a_dz*b_x*c_dy + a_x*b_dy*c_dz - a_x*b_dz*c_dy - a_dx*b_dz*c_y + a_dx*b_y*c_dz + a_dz*b_dx*c_y - a_dz*b_y*c_dx - a_y*b_dx*c_dz + a_y*b_dz*c_dx + a_dx*b_dy*c_z - a_dx*b_z*c_dy - a_dy*b_dx*c_z + a_dy*b_z*c_dx + a_z*b_dx*c_dy - a_z*b_dy*c_dx - a_dy*b_dz*d_x + a_dy*b_x*d_dz + a_dz*b_dy*d_x - a_dz*b_x*d_dy - a_x*b_dy*d_dz + a_x*b_dz*d_dy + a_dx*b_dz*d_y - a_dx*b_y*d_dz - a_dz*b_dx*d_y + a_dz*b_y*d_dx + a_y*b_dx*d_dz - a_y*b_dz*d_dx - a_dx*b_dy*d_z + a_dx*b_z*d_dy + a_dy*b_dx*d_z - a_dy*b_z*d_dx - a_z*b_dx*d_dy + a_z*b_dy*d_dx + a_dy*c_dz*d_x - a_dy*c_x*d_dz - a_dz*c_dy*d_x + a_dz*c_x*d_dy + a_x*c_dy*d_dz - a_x*c_dz*d_dy - a_dx*c_dz*d_y + a_dx*c_y*d_dz + a_dz*c_dx*d_y - a_dz*c_y*d_dx - a_y*c_dx*d_dz + a_y*c_dz*d_dx + a_dx*c_dy*d_z - a_dx*c_z*d_dy - a_dy*c_dx*d_z + a_dy*c_z*d_dx + a_z*c_dx*d_dy - a_z*c_dy*d_dx - b_dy*c_dz*d_x + b_dy*c_x*d_dz + b_dz*c_dy*d_x - b_dz*c_x*d_dy - b_x*c_dy*d_dz + b_x*c_dz*d_dy + b_dx*c_dz*d_y - b_dx*c_y*d_dz - b_dz*c_dx*d_y + b_dz*c_y*d_dx + b_y*c_dx*d_dz - b_y*c_dz*d_dx - b_dx*c_dy*d_z + b_dx*c_z*d_dy + b_dy*c_dx*d_z - b_dy*c_z*d_dx - b_z*c_dx*d_dy + b_z*c_dy*d_dx;
  204. double c = a_dz*b_x*c_y - a_dz*b_y*c_x - a_x*b_dz*c_y + a_x*b_y*c_dz + a_y*b_dz*c_x - a_y*b_x*c_dz - a_dy*b_x*c_z + a_dy*b_z*c_x + a_x*b_dy*c_z - a_x*b_z*c_dy - a_z*b_dy*c_x + a_z*b_x*c_dy + a_dx*b_y*c_z - a_dx*b_z*c_y - a_y*b_dx*c_z + a_y*b_z*c_dx + a_z*b_dx*c_y - a_z*b_y*c_dx - a_dz*b_x*d_y + a_dz*b_y*d_x + a_x*b_dz*d_y - a_x*b_y*d_dz - a_y*b_dz*d_x + a_y*b_x*d_dz + a_dy*b_x*d_z - a_dy*b_z*d_x - a_x*b_dy*d_z + a_x*b_z*d_dy + a_z*b_dy*d_x - a_z*b_x*d_dy - a_dx*b_y*d_z + a_dx*b_z*d_y + a_y*b_dx*d_z - a_y*b_z*d_dx - a_z*b_dx*d_y + a_z*b_y*d_dx + a_dz*c_x*d_y - a_dz*c_y*d_x - a_x*c_dz*d_y + a_x*c_y*d_dz + a_y*c_dz*d_x - a_y*c_x*d_dz - a_dy*c_x*d_z + a_dy*c_z*d_x + a_x*c_dy*d_z - a_x*c_z*d_dy - a_z*c_dy*d_x + a_z*c_x*d_dy + a_dx*c_y*d_z - a_dx*c_z*d_y - a_y*c_dx*d_z + a_y*c_z*d_dx + a_z*c_dx*d_y - a_z*c_y*d_dx - b_dz*c_x*d_y + b_dz*c_y*d_x + b_x*c_dz*d_y - b_x*c_y*d_dz - b_y*c_dz*d_x + b_y*c_x*d_dz + b_dy*c_x*d_z - b_dy*c_z*d_x - b_x*c_dy*d_z + b_x*c_z*d_dy + b_z*c_dy*d_x - b_z*c_x*d_dy - b_dx*c_y*d_z + b_dx*c_z*d_y + b_y*c_dx*d_z - b_y*c_z*d_dx - b_z*c_dx*d_y + b_z*c_y*d_dx;
  205. double d = a_x*b_y*c_z - a_x*b_z*c_y - a_y*b_x*c_z + a_y*b_z*c_x + a_z*b_x*c_y - a_z*b_y*c_x - a_x*b_y*d_z + a_x*b_z*d_y + a_y*b_x*d_z - a_y*b_z*d_x - a_z*b_x*d_y + a_z*b_y*d_x + a_x*c_y*d_z - a_x*c_z*d_y - a_y*c_x*d_z + a_y*c_z*d_x + a_z*c_x*d_y - a_z*c_y*d_x - b_x*c_y*d_z + b_x*c_z*d_y + b_y*c_x*d_z - b_y*c_z*d_x - b_z*c_x*d_y + b_z*c_y*d_x;
  206. if (a==0)
  207. {
  208. return get_smallest_pos_quad_zero(b,c,d);
  209. }
  210. b/=a; c/=a; d/=a; // normalize it all
  211. std::vector<double> res(3);
  212. int real_roots_num = SolveP3(res,b,c,d);
  213. switch (real_roots_num)
  214. {
  215. case 1:
  216. return (res[0] >= 0) ? res[0]:INFINITY;
  217. case 2:
  218. {
  219. double max_root = max(res[0],res[1]); double min_root = min(res[0],res[1]);
  220. if (min_root > 0) return min_root;
  221. if (max_root > 0) return max_root;
  222. return INFINITY;
  223. }
  224. case 3:
  225. default:
  226. {
  227. std::sort(res.begin(),res.end());
  228. if (res[0] > 0) return res[0];
  229. if (res[1] > 0) return res[1];
  230. if (res[2] > 0) return res[2];
  231. return INFINITY;
  232. }
  233. }
  234. }
  235. double compute_max_step_from_singularities(const Eigen::MatrixXd& uv,
  236. const Eigen::MatrixXi& F,
  237. Eigen::MatrixXd& d)
  238. {
  239. using namespace std;
  240. double max_step = INFINITY;
  241. // The if statement is outside the for loops to avoid branching/ease parallelizing
  242. if (uv.cols() == 2)
  243. {
  244. for (int f = 0; f < F.rows(); f++)
  245. {
  246. double min_positive_root = get_min_pos_root_2D(uv,F,d,f);
  247. max_step = min(max_step, min_positive_root);
  248. }
  249. }
  250. else
  251. { // volumetric deformation
  252. for (int f = 0; f < F.rows(); f++)
  253. {
  254. double min_positive_root = get_min_pos_root_3D(uv,F,d,f);
  255. max_step = min(max_step, min_positive_root);
  256. }
  257. }
  258. return max_step;
  259. }
  260. IGL_INLINE double igl::flip_avoiding_line_search(
  261. const Eigen::MatrixXi F,
  262. Eigen::MatrixXd& cur_v,
  263. Eigen::MatrixXd& dst_v,
  264. std::function<double(Eigen::MatrixXd&)> energy,
  265. double cur_energy)
  266. {
  267. using namespace std;
  268. Eigen::MatrixXd d = dst_v - cur_v;
  269. double min_step_to_singularity = compute_max_step_from_singularities(cur_v,F,d);
  270. double max_step_size = min(1., min_step_to_singularity*0.8);
  271. return igl::line_search(cur_v,d,max_step_size, energy, cur_energy);
  272. }
  273. #ifdef IGL_STATIC_LIBRARY
  274. #endif