509_Planarization.py 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121
  1. import sys, os
  2. import random
  3. from math import cos, sin, pi
  4. # Add the igl library to the modules search path
  5. sys.path.insert(0, os.getcwd() + "/../")
  6. import pyigl as igl
  7. from shared import TUTORIAL_SHARED_PATH, check_dependencies
  8. dependencies = ["viewer"]
  9. check_dependencies(dependencies)
  10. viewer = igl.viewer.Viewer()
  11. # Quad mesh generated from conjugate field
  12. VQC = igl.eigen.MatrixXd()
  13. FQC = igl.eigen.MatrixXi()
  14. FQCtri = igl.eigen.MatrixXi()
  15. PQC0 = igl.eigen.MatrixXd()
  16. PQC1 = igl.eigen.MatrixXd()
  17. PQC2 = igl.eigen.MatrixXd()
  18. PQC3 = igl.eigen.MatrixXd()
  19. # Planarized quad mesh
  20. VQCplan = igl.eigen.MatrixXd()
  21. FQCtriplan = igl.eigen.MatrixXi()
  22. PQC0plan = igl.eigen.MatrixXd()
  23. PQC1plan = igl.eigen.MatrixXd()
  24. PQC2plan = igl.eigen.MatrixXd()
  25. PQC3plan = igl.eigen.MatrixXd()
  26. def key_down(viewer, key, modifier):
  27. if key == ord('1'):
  28. # Draw the triangulated quad mesh
  29. viewer.data.set_mesh(VQC, FQCtri)
  30. # Assign a color to each quad that corresponds to its planarity
  31. planarity = igl.eigen.MatrixXd()
  32. igl.quad_planarity(VQC, FQC, planarity)
  33. Ct = igl.eigen.MatrixXd()
  34. igl.jet(planarity, 0, 0.01, Ct)
  35. C = igl.eigen.MatrixXd(FQCtri.rows(), 3)
  36. C.setTopRows(Ct.rows(), Ct)
  37. C.setBottomRows(Ct.rows(), Ct)
  38. viewer.data.set_colors(C)
  39. # Plot a line for each edge of the quad mesh
  40. viewer.data.add_edges(PQC0, PQC1, igl.eigen.MatrixXd([[0, 0, 0]]))
  41. viewer.data.add_edges(PQC1, PQC2, igl.eigen.MatrixXd([[0, 0, 0]]))
  42. viewer.data.add_edges(PQC2, PQC3, igl.eigen.MatrixXd([[0, 0, 0]]))
  43. viewer.data.add_edges(PQC3, PQC0, igl.eigen.MatrixXd([[0, 0, 0]]))
  44. elif key == ord('2'):
  45. # Draw the planar quad mesh
  46. viewer.data.set_mesh(VQCplan, FQCtri)
  47. # Assign a color to each quad that corresponds to its planarity
  48. planarity = igl.eigen.MatrixXd()
  49. igl.quad_planarity(VQCplan, FQC, planarity)
  50. Ct = igl.eigen.MatrixXd()
  51. igl.jet(planarity, 0, 0.01, Ct)
  52. C = igl.eigen.MatrixXd(FQCtri.rows(), 3)
  53. C.setTopRows(Ct.rows(), Ct)
  54. C.setBottomRows(Ct.rows(), Ct)
  55. viewer.data.set_colors(C)
  56. # Plot a line for each edge of the quad mesh
  57. viewer.data.add_edges(PQC0plan, PQC1plan, igl.eigen.MatrixXd([[0, 0, 0]]))
  58. viewer.data.add_edges(PQC1plan, PQC2plan, igl.eigen.MatrixXd([[0, 0, 0]]))
  59. viewer.data.add_edges(PQC2plan, PQC3plan, igl.eigen.MatrixXd([[0, 0, 0]]))
  60. viewer.data.add_edges(PQC3plan, PQC0plan, igl.eigen.MatrixXd([[0, 0, 0]]))
  61. else:
  62. return False
  63. return True
  64. # Load a quad mesh generated by a conjugate field
  65. igl.readOFF(TUTORIAL_SHARED_PATH + "inspired_mesh_quads_Conjugate.off", VQC, FQC)
  66. # Convert it to a triangle mesh
  67. FQCtri.resize(2 * FQC.rows(), 3)
  68. FQCtriUpper = igl.eigen.MatrixXi(FQC.rows(), 3)
  69. FQCtriLower = igl.eigen.MatrixXi(FQC.rows(), 3)
  70. FQCtriUpper.setCol(0, FQC.col(0))
  71. FQCtriUpper.setCol(1, FQC.col(1))
  72. FQCtriUpper.setCol(2, FQC.col(2))
  73. FQCtriLower.setCol(0, FQC.col(2))
  74. FQCtriLower.setCol(1, FQC.col(3))
  75. FQCtriLower.setCol(2, FQC.col(0))
  76. FQCtri.setTopRows(FQCtriUpper.rows(), FQCtriUpper)
  77. FQCtri.setBottomRows(FQCtriLower.rows(), FQCtriLower)
  78. igl.slice(VQC, FQC.col(0), 1, PQC0)
  79. igl.slice(VQC, FQC.col(1), 1, PQC1)
  80. igl.slice(VQC, FQC.col(2), 1, PQC2)
  81. igl.slice(VQC, FQC.col(3), 1, PQC3)
  82. # Planarize it
  83. igl.planarize_quad_mesh(VQC, FQC, 100, 0.005, VQCplan)
  84. # Convert the planarized mesh to triangles
  85. igl.slice(VQCplan, FQC.col(0), 1, PQC0plan)
  86. igl.slice(VQCplan, FQC.col(1), 1, PQC1plan)
  87. igl.slice(VQCplan, FQC.col(2), 1, PQC2plan)
  88. igl.slice(VQCplan, FQC.col(3), 1, PQC3plan)
  89. # Launch the viewer
  90. key_down(viewer, ord('2'), 0)
  91. viewer.core.invert_normals = True
  92. viewer.core.show_lines = False
  93. viewer.callback_key_down = key_down
  94. viewer.launch()