305_QuadraticProgramming.py 2.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. # Add the igl library to the modules search path
  2. import sys, os
  3. sys.path.insert(0, os.getcwd() + "/../")
  4. import pyigl as igl
  5. b = igl.eigen.MatrixXi()
  6. B = igl.eigen.MatrixXd()
  7. bc = igl.eigen.MatrixXd()
  8. lx = igl.eigen.MatrixXd()
  9. ux = igl.eigen.MatrixXd()
  10. Beq = igl.eigen.MatrixXd()
  11. Bieq = igl.eigen.MatrixXd()
  12. Z = igl.eigen.MatrixXd()
  13. Q = igl.eigen.SparseMatrixd()
  14. Aeq = igl.eigen.SparseMatrixd()
  15. Aieq = igl.eigen.SparseMatrixd()
  16. def solve(viewer):
  17. global Q,B,b,bc,Aeq,Beq,Aieq,Bieq,lx,ux,Z
  18. params = igl.active_set_params()
  19. params.max_iter = 8
  20. igl.active_set(Q,B,b,bc,Aeq,Beq,Aieq,Bieq,lx,ux,params,Z)
  21. C = igl.eigen.MatrixXd()
  22. igl.jet(Z,0,1,C)
  23. viewer.data.set_colors(C)
  24. def key_down(viewer, key, mod):
  25. global Beq,solve
  26. if key == ord('.'):
  27. Beq[0,0] = Beq[0,0] * 2.0
  28. solve(viewer)
  29. return True
  30. elif key == ord(','):
  31. Beq[0,0] = Beq[0,0] / 2.0
  32. solve(viewer)
  33. return True
  34. elif key == ord(' '):
  35. solve(viewer)
  36. return True
  37. return False;
  38. V = igl.eigen.MatrixXd()
  39. F = igl.eigen.MatrixXi()
  40. igl.readOFF("../../tutorial/shared/cheburashka.off",V,F)
  41. # Plot the mesh
  42. viewer = igl.viewer.Viewer()
  43. viewer.data.set_mesh(V, F)
  44. viewer.core.show_lines = False
  45. viewer.callback_key_down = key_down
  46. # One fixed point on belly
  47. b = igl.eigen.MatrixXi([[2556]])
  48. bc = igl.eigen.MatrixXd([[1]])
  49. # Construct Laplacian and mass matrix
  50. L = igl.eigen.SparseMatrixd()
  51. M = igl.eigen.SparseMatrixd()
  52. Minv = igl.eigen.SparseMatrixd()
  53. igl.cotmatrix(V,F,L)
  54. igl.massmatrix(V,F,igl.MASSMATRIX_TYPE_VORONOI,M);
  55. igl.invert_diag(M,Minv)
  56. # Bi-Laplacian
  57. Q = L.transpose() * (Minv * L)
  58. # Zero linear term
  59. B = igl.eigen.MatrixXd.Zero(V.rows(),1)
  60. # Lower and upper bound
  61. lx = igl.eigen.MatrixXd.Zero(V.rows(),1)
  62. ux = igl.eigen.MatrixXd.Ones(V.rows(),1)
  63. # Equality constraint constrain solution to sum to 1
  64. Beq = igl.eigen.MatrixXd([[0.08]])
  65. Aeq = M.diagonal().sparseView().transpose()
  66. # (Empty inequality constraints)
  67. solve(viewer)
  68. print("Press '.' to increase scale and resolve.")
  69. print("Press ',' to decrease scale and resolve.")
  70. viewer.launch()