123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- # Add the igl library to the modules search path
- import sys, os
- sys.path.insert(0, os.getcwd() + "/../")
- import pyigl as igl
- b = igl.eigen.MatrixXi()
- B = igl.eigen.MatrixXd()
- bc = igl.eigen.MatrixXd()
- lx = igl.eigen.MatrixXd()
- ux = igl.eigen.MatrixXd()
- Beq = igl.eigen.MatrixXd()
- Bieq = igl.eigen.MatrixXd()
- Z = igl.eigen.MatrixXd()
- Q = igl.eigen.SparseMatrixd()
- Aeq = igl.eigen.SparseMatrixd()
- Aieq = igl.eigen.SparseMatrixd()
- def solve(viewer):
- global Q,B,b,bc,Aeq,Beq,Aieq,Bieq,lx,ux,Z
- params = igl.active_set_params()
- params.max_iter = 8
- igl.active_set(Q,B,b,bc,Aeq,Beq,Aieq,Bieq,lx,ux,params,Z)
- C = igl.eigen.MatrixXd()
- igl.jet(Z,0,1,C)
- viewer.data.set_colors(C)
- def key_down(viewer, key, mod):
- global Beq,solve
- if key == ord('.'):
- Beq[0,0] = Beq[0,0] * 2.0
- solve(viewer)
- return True
- elif key == ord(','):
- Beq[0,0] = Beq[0,0] / 2.0
- solve(viewer)
- return True
- elif key == ord(' '):
- solve(viewer)
- return True
- return False;
- V = igl.eigen.MatrixXd()
- F = igl.eigen.MatrixXi()
- igl.readOFF("../../tutorial/shared/cheburashka.off",V,F)
- # Plot the mesh
- viewer = igl.viewer.Viewer()
- viewer.data.set_mesh(V, F)
- viewer.core.show_lines = False
- viewer.callback_key_down = key_down
- # One fixed point on belly
- b = igl.eigen.MatrixXi([[2556]])
- bc = igl.eigen.MatrixXd([[1]])
- # Construct Laplacian and mass matrix
- L = igl.eigen.SparseMatrixd()
- M = igl.eigen.SparseMatrixd()
- Minv = igl.eigen.SparseMatrixd()
- igl.cotmatrix(V,F,L)
- igl.massmatrix(V,F,igl.MASSMATRIX_TYPE_VORONOI,M);
- igl.invert_diag(M,Minv)
- # Bi-Laplacian
- Q = L.transpose() * (Minv * L)
- # Zero linear term
- B = igl.eigen.MatrixXd.Zero(V.rows(),1)
- # Lower and upper bound
- lx = igl.eigen.MatrixXd.Zero(V.rows(),1)
- ux = igl.eigen.MatrixXd.Ones(V.rows(),1)
- # Equality constraint constrain solution to sum to 1
- Beq = igl.eigen.MatrixXd([[0.08]])
- Aeq = M.diagonal().sparseView().transpose()
- # (Empty inequality constraints)
- solve(viewer)
- print("Press '.' to increase scale and resolve.")
- print("Press ',' to decrease scale and resolve.")
- viewer.launch()
|