507_PolyVectorField.py 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130
  1. # Add the igl library to the modules search path
  2. import sys, os
  3. sys.path.insert(0, os.getcwd() + "/../")
  4. import pyigl as igl
  5. import random
  6. from math import cos,sin,pi
  7. # Input mesh
  8. V = igl.eigen.MatrixXd()
  9. F = igl.eigen.MatrixXi()
  10. # Per face bases
  11. B1 = igl.eigen.MatrixXd()
  12. B2 = igl.eigen.MatrixXd()
  13. B3 = igl.eigen.MatrixXd()
  14. # Face barycenters
  15. B = igl.eigen.MatrixXd()
  16. # Scale for visualizing the fields
  17. global_scale = 1
  18. # Random length factor
  19. rand_factor = 5
  20. samples = igl.eigen.MatrixXi()
  21. def readSamples(fname):
  22. samples = igl.eigen.MatrixXi()
  23. numSamples = 0
  24. fp = open(fname, 'r')
  25. numSamples = int(fp.readline())
  26. samples.resize(numSamples,1)
  27. for i in range(0,numSamples):
  28. samples[i] = int(fp.readline())
  29. fp.close()
  30. return samples
  31. # Create a random set of tangent vectors
  32. def random_constraints(b1, b2, n):
  33. r = igl.eigen.MatrixXd(1,n*3)
  34. for i in range(0,n):
  35. a = random.random()*2*pi
  36. s = 1 + random.random() * rand_factor
  37. t = s * (cos(a) * b1 + sin(a) * b2)
  38. r.setBlock(0,i*3,1,3,t)
  39. return r
  40. def key_down(viewer, key, modifier):
  41. if key < ord('1') or key > ord('8'):
  42. return False
  43. viewer.data.lines.resize(0,9)
  44. num = key - ord('0')
  45. # Interpolate
  46. print("Interpolating " + repr(num * 2) + "-PolyVector field")
  47. b = igl.eigen.MatrixXi([[4550, 2321, 5413, 5350]]).transpose()
  48. bc = igl.eigen.MatrixXd(b.size(),num*3)
  49. for i in range(0,b.size()):
  50. t = random_constraints(B1.row(b[i]),B2.row(b[i]),num)
  51. bc.setRow(i,t)
  52. # Interpolated PolyVector field
  53. pvf = igl.eigen.MatrixXd()
  54. igl.n_polyvector(V, F, b, bc, pvf)
  55. # Highlight in red the constrained faces
  56. C = igl.eigen.MatrixXd.Constant(F.rows(),3,1)
  57. for i in range(0,b.size()):
  58. C.setRow(b[i],igl.eigen.MatrixXd([[1, 0, 0]]))
  59. viewer.data.set_colors(C)
  60. for n in range(0,num):
  61. VF = igl.eigen.MatrixXd.Zero(F.rows(),3)
  62. for i in range(0,b.size()):
  63. VF.setRow(b[i],bc.block(i,n*3,1,3))
  64. for i in range(0,samples.rows()):
  65. VF.setRow(samples[i],pvf.block(samples[i],n*3,1,3))
  66. c = VF.rowwiseNorm()
  67. C2 = igl.eigen.MatrixXd()
  68. igl.jet(c,1,1+rand_factor,C2)
  69. viewer.data.add_edges(B - global_scale*VF, B + global_scale*VF , C2)
  70. return False
  71. # Load a mesh in OBJ format
  72. igl.readOBJ("../../tutorial/shared/lilium.obj", V, F)
  73. samples = readSamples("../../tutorial/shared/lilium.samples.0.2")
  74. # Compute local basis for faces
  75. igl.local_basis(V,F,B1,B2,B3)
  76. # Compute face barycenters
  77. igl.barycenter(V, F, B)
  78. # Compute scale for visualizing fields
  79. global_scale = 0.2*igl.avg_edge_length(V, F)
  80. # Make the example deterministic
  81. random.seed(0)
  82. viewer = igl.viewer.Viewer()
  83. viewer.data.set_mesh(V, F)
  84. viewer.callback_key_down = key_down
  85. viewer.core.show_lines = False
  86. key_down(viewer,ord('2'),0)
  87. viewer.launch()