py_doc.cpp 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267
  1. const char *__doc_igl_active_set = R"igl_Qu8mg5v7(// Known Bugs: rows of [Aeq;Aieq] **must** be linearly independent. Should be
  2. // using QR decomposition otherwise:
  3. // http://www.okstate.edu/sas/v8/sashtml/ormp/chap5/sect32.htm
  4. //
  5. // ACTIVE_SET Minimize quadratic energy
  6. //
  7. // 0.5*Z'*A*Z + Z'*B + C with constraints
  8. //
  9. // that Z(known) = Y, optionally also subject to the constraints Aeq*Z = Beq,
  10. // and further optionally subject to the linear inequality constraints that
  11. // Aieq*Z <= Bieq and constant inequality constraints lx <= x <= ux
  12. //
  13. // Inputs:
  14. // A n by n matrix of quadratic coefficients
  15. // B n by 1 column of linear coefficients
  16. // known list of indices to known rows in Z
  17. // Y list of fixed values corresponding to known rows in Z
  18. // Aeq meq by n list of linear equality constraint coefficients
  19. // Beq meq by 1 list of linear equality constraint constant values
  20. // Aieq mieq by n list of linear inequality constraint coefficients
  21. // Bieq mieq by 1 list of linear inequality constraint constant values
  22. // lx n by 1 list of lower bounds [] implies -Inf
  23. // ux n by 1 list of upper bounds [] implies Inf
  24. // params struct of additional parameters (see below)
  25. // Z if not empty, is taken to be an n by 1 list of initial guess values
  26. // (see output)
  27. // Outputs:
  28. // Z n by 1 list of solution values
  29. // Returns true on success, false on error
  30. //
  31. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  32. // secs, igl/min_quad_with_fixed.h 7.1 secs
  33. //)igl_Qu8mg5v7";
  34. const char *__doc_igl_arap_precomputation = R"igl_Qu8mg5v7(// Compute necessary information to start using an ARAP deformation
  35. //
  36. // Inputs:
  37. // V #V by dim list of mesh positions
  38. // F #F by simplex-size list of triangle|tet indices into V
  39. // dim dimension being used at solve time. For deformation usually dim =
  40. // V.cols(), for surface parameterization V.cols() = 3 and dim = 2
  41. // b #b list of "boundary" fixed vertex indices into V
  42. // Outputs:
  43. // data struct containing necessary precomputation)igl_Qu8mg5v7";
  44. const char *__doc_igl_arap_solve = R"igl_Qu8mg5v7(// Inputs:
  45. // bc #b by dim list of boundary conditions
  46. // data struct containing necessary precomputation and parameters
  47. // U #V by dim initial guess)igl_Qu8mg5v7";
  48. const char *__doc_igl_avg_edge_length = R"igl_Qu8mg5v7(// Compute the average edge length for the given triangle mesh
  49. // Templates:
  50. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  51. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  52. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  53. // Inputs:
  54. // V eigen matrix #V by 3
  55. // F #F by simplex-size list of mesh faces (must be simplex)
  56. // Outputs:
  57. // l average edge length
  58. //
  59. // See also: adjacency_matrix)igl_Qu8mg5v7";
  60. const char *__doc_igl_barycenter = R"igl_Qu8mg5v7(// Computes the barycenter of every simplex
  61. //
  62. // Inputs:
  63. // V #V x dim matrix of vertex coordinates
  64. // F #F x simplex_size matrix of indices of simplex corners into V
  65. // Output:
  66. // BC #F x dim matrix of 3d vertices
  67. //)igl_Qu8mg5v7";
  68. const char *__doc_igl_barycentric_coordinates = R"igl_Qu8mg5v7(// Compute barycentric coordinates in a tet
  69. //
  70. // Inputs:
  71. // P #P by 3 Query points in 3d
  72. // A #P by 3 Tet corners in 3d
  73. // B #P by 3 Tet corners in 3d
  74. // C #P by 3 Tet corners in 3d
  75. // D #P by 3 Tet corners in 3d
  76. // Outputs:
  77. // L #P by 4 list of barycentric coordinates
  78. // )igl_Qu8mg5v7";
  79. const char *__doc_igl_bbw_bbw = R"igl_Qu8mg5v7(// Compute Bounded Biharmonic Weights on a given domain (V,Ele) with a given
  80. // set of boundary conditions
  81. //
  82. // Templates
  83. // DerivedV derived type of eigen matrix for V (e.g. MatrixXd)
  84. // DerivedF derived type of eigen matrix for F (e.g. MatrixXi)
  85. // Derivedb derived type of eigen matrix for b (e.g. VectorXi)
  86. // Derivedbc derived type of eigen matrix for bc (e.g. MatrixXd)
  87. // DerivedW derived type of eigen matrix for W (e.g. MatrixXd)
  88. // Inputs:
  89. // V #V by dim vertex positions
  90. // Ele #Elements by simplex-size list of element indices
  91. // b #b boundary indices into V
  92. // bc #b by #W list of boundary values
  93. // data object containing options, intial guess --> solution and results
  94. // Outputs:
  95. // W #V by #W list of *unnormalized* weights to normalize use
  96. // igl::normalize_row_sums(W,W);
  97. // Returns true on success, false on failure)igl_Qu8mg5v7";
  98. const char *__doc_igl_boundary_conditions = R"igl_Qu8mg5v7(// Compute boundary conditions for automatic weights computation. This
  99. // function expects that the given mesh (V,Ele) has sufficient samples
  100. // (vertices) exactly at point handle locations and exactly along bone and
  101. // cage edges.
  102. //
  103. // Inputs:
  104. // V #V by dim list of domain vertices
  105. // Ele #Ele by simplex-size list of simplex indices
  106. // C #C by dim list of handle positions
  107. // P #P by 1 list of point handle indices into C
  108. // BE #BE by 2 list of bone edge indices into C
  109. // CE #CE by 2 list of cage edge indices into *P*
  110. // Outputs:
  111. // b #b list of boundary indices (indices into V of vertices which have
  112. // known, fixed values)
  113. // bc #b by #weights list of known/fixed values for boundary vertices
  114. // (notice the #b != #weights in general because #b will include all the
  115. // intermediary samples along each bone, etc.. The ordering of the
  116. // weights corresponds to [P;BE]
  117. // Returns true if boundary conditions make sense)igl_Qu8mg5v7";
  118. const char *__doc_igl_boundary_facets = R"igl_Qu8mg5v7(// BOUNDARY_FACETS Determine boundary faces (edges) of tetrahedra (triangles)
  119. // stored in T (analogous to qptoolbox's `outline` and `boundary_faces`).
  120. //
  121. // Templates:
  122. // IntegerT integer-value: e.g. int
  123. // IntegerF integer-value: e.g. int
  124. // Input:
  125. // T tetrahedron (triangle) index list, m by 4 (3), where m is the number of tetrahedra
  126. // Output:
  127. // F list of boundary faces, n by 3 (2), where n is the number of boundary faces
  128. //
  129. //)igl_Qu8mg5v7";
  130. const char *__doc_igl_boundary_loop = R"igl_Qu8mg5v7(// Compute list of ordered boundary loops for a manifold mesh.
  131. //
  132. // Templates:
  133. // Index index type
  134. // Inputs:
  135. // F #V by dim list of mesh faces
  136. // Outputs:
  137. // L list of loops where L[i] = ordered list of boundary vertices in loop i
  138. //)igl_Qu8mg5v7";
  139. const char *__doc_igl_cat = R"igl_Qu8mg5v7(// Perform concatenation of a two matrices along a single dimension
  140. // If dim == 1, then C = [A;B]. If dim == 2 then C = [A B]
  141. //
  142. // Template:
  143. // Scalar scalar data type for sparse matrices like double or int
  144. // Mat matrix type for all matrices (e.g. MatrixXd, SparseMatrix)
  145. // MatC matrix type for ouput matrix (e.g. MatrixXd) needs to support
  146. // resize
  147. // Inputs:
  148. // A first input matrix
  149. // B second input matrix
  150. // dim dimension along which to concatenate, 0 or 1
  151. // Outputs:
  152. // C output matrix
  153. // )igl_Qu8mg5v7";
  154. const char *__doc_igl_collapse_edge = R"igl_Qu8mg5v7(See collapse_edge for the documentation.)igl_Qu8mg5v7";
  155. const char *__doc_igl_colon = R"igl_Qu8mg5v7(// Colon operator like matlab's colon operator. Enumerats values between low
  156. // and hi with step step.
  157. // Templates:
  158. // L should be a eigen matrix primitive type like int or double
  159. // S should be a eigen matrix primitive type like int or double
  160. // H should be a eigen matrix primitive type like int or double
  161. // T should be a eigen matrix primitive type like int or double
  162. // Inputs:
  163. // low starting value if step is valid then this is *always* the first
  164. // element of I
  165. // step step difference between sequential elements returned in I,
  166. // remember this will be cast to template T at compile time. If low<hi
  167. // then step must be positive. If low>hi then step must be negative.
  168. // Otherwise I will be set to empty.
  169. // hi ending value, if (hi-low)%step is zero then this will be the last
  170. // element in I. If step is positive there will be no elements greater
  171. // than hi, vice versa if hi<low
  172. // Output:
  173. // I list of values from low to hi with step size step)igl_Qu8mg5v7";
  174. const char *__doc_igl_column_to_quats = R"igl_Qu8mg5v7(// "Columnize" a list of quaternions (q1x,q1y,q1z,q1w,q2x,q2y,q2z,q2w,...)
  175. //
  176. // Inputs:
  177. // Q n*4-long list of coefficients
  178. // Outputs:
  179. // vQ n-long list of quaternions
  180. // Returns false if n%4!=0)igl_Qu8mg5v7";
  181. const char *__doc_igl_comb_cross_field = R"igl_Qu8mg5v7(// Inputs:
  182. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  183. // F #F by 4 eigen Matrix of face (quad) indices
  184. // PD1in #F by 3 eigen Matrix of the first per face cross field vector
  185. // PD2in #F by 3 eigen Matrix of the second per face cross field vector
  186. // Output:
  187. // PD1out #F by 3 eigen Matrix of the first combed cross field vector
  188. // PD2out #F by 3 eigen Matrix of the second combed cross field vector
  189. //)igl_Qu8mg5v7";
  190. const char *__doc_igl_comb_frame_field = R"igl_Qu8mg5v7(// Inputs:
  191. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  192. // F #F by 4 eigen Matrix of face (quad) indices
  193. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  194. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  195. // BIS1_combed #F by 3 eigen Matrix of the first combed bisector field vector
  196. // BIS2_combed #F by 3 eigen Matrix of the second combed bisector field vector
  197. // Output:
  198. // PD1_combed #F by 3 eigen Matrix of the first combed cross field vector
  199. // PD2_combed #F by 3 eigen Matrix of the second combed cross field vector
  200. //)igl_Qu8mg5v7";
  201. const char *__doc_igl_compute_frame_field_bisectors = R"igl_Qu8mg5v7(// Compute bisectors of a frame field defined on mesh faces
  202. // Inputs:
  203. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  204. // F #F by 3 eigen Matrix of face (triangle) indices
  205. // B1 #F by 3 eigen Matrix of face (triangle) base vector 1
  206. // B2 #F by 3 eigen Matrix of face (triangle) base vector 2
  207. // PD1 #F by 3 eigen Matrix of the first per face frame field vector
  208. // PD2 #F by 3 eigen Matrix of the second per face frame field vector
  209. // Output:
  210. // BIS1 #F by 3 eigen Matrix of the first per face frame field bisector
  211. // BIS2 #F by 3 eigen Matrix of the second per face frame field bisector
  212. //)igl_Qu8mg5v7";
  213. const char *__doc_igl_copyleft_cgal_mesh_boolean = R"igl_Qu8mg5v7(// MESH_BOOLEAN Compute boolean csg operations on "solid", consistently
  214. // oriented meshes.
  215. //
  216. // Inputs:
  217. // VA #VA by 3 list of vertex positions of first mesh
  218. // FA #FA by 3 list of triangle indices into VA
  219. // VB #VB by 3 list of vertex positions of second mesh
  220. // FB #FB by 3 list of triangle indices into VB
  221. // type type of boolean operation
  222. // Outputs:
  223. // VC #VC by 3 list of vertex positions of boolean result mesh
  224. // FC #FC by 3 list of triangle indices into VC
  225. // J #FC list of indices into [FA;FA.rows()+FB] revealing "birth" facet
  226. // Returns true if inputs induce a piecewise constant winding number
  227. // field and type is valid
  228. //
  229. // See also: mesh_boolean_cork, intersect_other,
  230. // remesh_self_intersections)igl_Qu8mg5v7";
  231. const char *__doc_igl_copyleft_comiso_miq = R"igl_Qu8mg5v7(// Inputs:
  232. // V #V by 3 list of mesh vertex 3D positions
  233. // F #F by 3 list of faces indices in V
  234. // PD1 #V by 3 first line of the Jacobian per triangle
  235. // PD2 #V by 3 second line of the Jacobian per triangle
  236. // (optional, if empty it will be a vector in the tangent plane orthogonal to PD1)
  237. // scale global scaling for the gradient (controls the quads resolution)
  238. // stiffness weight for the stiffness iterations
  239. // direct_round greedily round all integer variables at once (greatly improves optimization speed but lowers quality)
  240. // iter stiffness iterations (0 = no stiffness)
  241. // local_iter number of local iterations for the integer rounding
  242. // do_round enables the integer rounding (disabling it could be useful for debugging)
  243. // round_vertices id of additional vertices that should be snapped to integer coordinates
  244. // hard_features #H by 2 list of pairs of vertices that belongs to edges that should be snapped to integer coordinates
  245. //
  246. // Output:
  247. // UV #UV by 2 list of vertices in 2D
  248. // FUV #FUV by 3 list of face indices in UV
  249. //
  250. // TODO: rename the parameters name in the cpp consistenly
  251. // improve the handling of hard_features, right now it might fail in difficult cases)igl_Qu8mg5v7";
  252. const char *__doc_igl_copyleft_comiso_nrosy = R"igl_Qu8mg5v7(// Generate a N-RoSy field from a sparse set of constraints
  253. //
  254. // Inputs:
  255. // V #V by 3 list of mesh vertex coordinates
  256. // F #F by 3 list of mesh faces (must be triangles)
  257. // b #B by 1 list of constrained face indices
  258. // bc #B by 3 list of representative vectors for the constrained
  259. // faces
  260. // b_soft #S by 1 b for soft constraints
  261. // w_soft #S by 1 weight for the soft constraints (0-1)
  262. // bc_soft #S by 3 bc for soft constraints
  263. // N the degree of the N-RoSy vector field
  264. // soft the strenght of the soft contraints w.r.t. smoothness
  265. // (0 -> smoothness only, 1->constraints only)
  266. // Outputs:
  267. // R #F by 3 the representative vectors of the interpolated field
  268. // S #V by 1 the singularity index for each vertex (0 = regular))igl_Qu8mg5v7";
  269. const char *__doc_igl_copyleft_marching_cubes = R"igl_Qu8mg5v7(// marching_cubes( values, points, x_res, y_res, z_res, vertices, faces )
  270. //
  271. // performs marching cubes reconstruction on the grid defined by values, and
  272. // points, and generates vertices and faces
  273. //
  274. // Input:
  275. // values #number_of_grid_points x 1 array -- the scalar values of an
  276. // implicit function defined on the grid points (<0 in the inside of the
  277. // surface, 0 on the border, >0 outside)
  278. // points #number_of_grid_points x 3 array -- 3-D positions of the grid
  279. // points, ordered in x,y,z order:
  280. // points[index] = the point at (x,y,z) where :
  281. // x = (index % (xres -1),
  282. // y = (index / (xres-1)) %(yres-1),
  283. // z = index / (xres -1) / (yres -1) ).
  284. // where x,y,z index x, y, z dimensions
  285. // i.e. index = x + y*xres + z*xres*yres
  286. // xres resolutions of the grid in x dimension
  287. // yres resolutions of the grid in y dimension
  288. // zres resolutions of the grid in z dimension
  289. // Output:
  290. // vertices #V by 3 list of mesh vertex positions
  291. // faces #F by 3 list of mesh triangle indices
  292. //)igl_Qu8mg5v7";
  293. const char *__doc_igl_copyleft_swept_volume = R"igl_Qu8mg5v7(// Compute the surface of the swept volume of a solid object with surface
  294. // (V,F) mesh under going rigid motion.
  295. //
  296. // Inputs:
  297. // V #V by 3 list of mesh positions in reference pose
  298. // F #F by 3 list of mesh indices into V
  299. // transform function handle so that transform(t) returns the rigid
  300. // transformation at time t∈[0,1]
  301. // steps number of time steps: steps=3 --> t∈{0,0.5,1}
  302. // grid_res number of grid cells on the longest side containing the
  303. // motion (isolevel+1 cells will also be added on each side as padding)
  304. // isolevel distance level to be contoured as swept volume
  305. // Outputs:
  306. // SV #SV by 3 list of mesh positions of the swept surface
  307. // SF #SF by 3 list of mesh faces into SV)igl_Qu8mg5v7";
  308. const char *__doc_igl_copyleft_tetgen_tetrahedralize = R"igl_Qu8mg5v7(// Mesh the interior of a surface mesh (V,F) using tetgen
  309. //
  310. // Inputs:
  311. // V #V by 3 vertex position list
  312. // F #F list of polygon face indices into V (0-indexed)
  313. // switches string of tetgen options (See tetgen documentation) e.g.
  314. // "pq1.414a0.01" tries to mesh the interior of a given surface with
  315. // quality and area constraints
  316. // "" will mesh the convex hull constrained to pass through V (ignores F)
  317. // Outputs:
  318. // TV #V by 3 vertex position list
  319. // TT #T by 4 list of tet face indices
  320. // TF #F by 3 list of triangle face indices
  321. // Returns status:
  322. // 0 success
  323. // 1 tetgen threw exception
  324. // 2 tetgen did not crash but could not create any tets (probably there are
  325. // holes, duplicate faces etc.)
  326. // -1 other error)igl_Qu8mg5v7";
  327. const char *__doc_igl_cotmatrix = R"igl_Qu8mg5v7(// Constructs the cotangent stiffness matrix (discrete laplacian) for a given
  328. // mesh (V,F).
  329. //
  330. // Templates:
  331. // DerivedV derived type of eigen matrix for V (e.g. derived from
  332. // MatrixXd)
  333. // DerivedF derived type of eigen matrix for F (e.g. derived from
  334. // MatrixXi)
  335. // Scalar scalar type for eigen sparse matrix (e.g. double)
  336. // Inputs:
  337. // V #V by dim list of mesh vertex positions
  338. // F #F by simplex_size list of mesh faces (must be triangles)
  339. // Outputs:
  340. // L #V by #V cotangent matrix, each row i corresponding to V(i,:)
  341. //
  342. // See also: adjacency_matrix
  343. //
  344. // Note: This Laplacian uses the convention that diagonal entries are
  345. // **minus** the sum of off-diagonal entries. The diagonal entries are
  346. // therefore in general negative and the matrix is **negative** semi-definite
  347. // (immediately, -L is **positive** semi-definite)
  348. //
  349. // Known bugs: off by 1e-16 on regular grid. I think its a problem of
  350. // arithmetic order in cotmatrix_entries.h: C(i,e) = (arithmetic)/dblA/4)igl_Qu8mg5v7";
  351. const char *__doc_igl_covariance_scatter_matrix = R"igl_Qu8mg5v7(// Construct the covariance scatter matrix for a given arap energy
  352. // Inputs:
  353. // V #V by Vdim list of initial domain positions
  354. // F #F by 3 list of triangle indices into V
  355. // energy ARAPEnergyType enum value defining which energy is being used.
  356. // See ARAPEnergyType.h for valid options and explanations.
  357. // Outputs:
  358. // CSM dim*#V/#F by dim*#V sparse matrix containing special laplacians along
  359. // the diagonal so that when multiplied by V gives covariance matrix
  360. // elements, can be used to speed up covariance matrix computation)igl_Qu8mg5v7";
  361. const char *__doc_igl_cross_field_missmatch = R"igl_Qu8mg5v7(// Inputs:
  362. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  363. // F #F by 3 eigen Matrix of face (quad) indices
  364. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  365. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  366. // isCombed boolean, specifying whether the field is combed (i.e. matching has been precomputed.
  367. // If not, the field is combed first.
  368. // Output:
  369. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  370. // across all face edges
  371. //)igl_Qu8mg5v7";
  372. const char *__doc_igl_cut_mesh_from_singularities = R"igl_Qu8mg5v7(// Given a mesh (V,F) and the integer mismatch of a cross field per edge
  373. // (MMatch), finds the cut_graph connecting the singularities (seams) and the
  374. // degree of the singularities singularity_index
  375. //
  376. // Input:
  377. // V #V by 3 list of mesh vertex positions
  378. // F #F by 3 list of faces
  379. // MMatch #F by 3 list of per corner integer mismatch
  380. // Outputs:
  381. // seams #F by 3 list of per corner booleans that denotes if an edge is a
  382. // seam or not
  383. //)igl_Qu8mg5v7";
  384. const char *__doc_igl_deform_skeleton = R"igl_Qu8mg5v7(// Deform a skeleton.
  385. //
  386. // Inputs:
  387. // C #C by 3 list of joint positions
  388. // BE #BE by 2 list of bone edge indices
  389. // vA #BE list of bone transformations
  390. // Outputs
  391. // CT #BE*2 by 3 list of deformed joint positions
  392. // BET #BE by 2 list of bone edge indices (maintains order)
  393. //)igl_Qu8mg5v7";
  394. const char *__doc_igl_directed_edge_orientations = R"igl_Qu8mg5v7(// Determine rotations that take each edge from the x-axis to its given rest
  395. // orientation.
  396. //
  397. // Inputs:
  398. // C #C by 3 list of edge vertex positions
  399. // E #E by 2 list of directed edges
  400. // Outputs:
  401. // Q #E list of quaternions
  402. //)igl_Qu8mg5v7";
  403. const char *__doc_igl_directed_edge_parents = R"igl_Qu8mg5v7(// Recover "parents" (preceeding edges) in a tree given just directed edges.
  404. //
  405. // Inputs:
  406. // E #E by 2 list of directed edges
  407. // Outputs:
  408. // P #E list of parent indices into E (-1) means root
  409. //)igl_Qu8mg5v7";
  410. const char *__doc_igl_doublearea = R"igl_Qu8mg5v7(// DOUBLEAREA computes twice the area for each input triangle[quad]
  411. //
  412. // Templates:
  413. // DerivedV derived type of eigen matrix for V (e.g. derived from
  414. // MatrixXd)
  415. // DerivedF derived type of eigen matrix for F (e.g. derived from
  416. // MatrixXi)
  417. // DeriveddblA derived type of eigen matrix for dblA (e.g. derived from
  418. // MatrixXd)
  419. // Inputs:
  420. // V #V by dim list of mesh vertex positions
  421. // F #F by simplex_size list of mesh faces (must be triangles or quads)
  422. // Outputs:
  423. // dblA #F list of triangle[quad] double areas (SIGNED only for 2D input)
  424. //
  425. // Known bug: For dim==3 complexity is O(#V + #F)!! Not just O(#F). This is a big deal
  426. // if you have 1million unreferenced vertices and 1 face)igl_Qu8mg5v7";
  427. const char *__doc_igl_doublearea_single = R"igl_Qu8mg5v7(// Single triangle in 2D!
  428. //
  429. // This should handle streams of corners not just single corners)igl_Qu8mg5v7";
  430. const char *__doc_igl_doublearea_quad = R"igl_Qu8mg5v7(// DOUBLEAREA_QUAD computes twice the area for each input quadrilateral
  431. //
  432. // Inputs:
  433. // V #V by dim list of mesh vertex positions
  434. // F #F by simplex_size list of mesh faces (must be quadrilaterals)
  435. // Outputs:
  436. // dblA #F list of quadrilateral double areas
  437. //)igl_Qu8mg5v7";
  438. const char *__doc_igl_dqs = R"igl_Qu8mg5v7(// Dual quaternion skinning
  439. //
  440. // Inputs:
  441. // V #V by 3 list of rest positions
  442. // W #W by #C list of weights
  443. // vQ #C list of rotation quaternions
  444. // vT #C list of translation vectors
  445. // Outputs:
  446. // U #V by 3 list of new positions)igl_Qu8mg5v7";
  447. const char *__doc_igl_edge_lengths = R"igl_Qu8mg5v7(// Constructs a list of lengths of edges opposite each index in a face
  448. // (triangle/tet) list
  449. //
  450. // Templates:
  451. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  452. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  453. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  454. // Inputs:
  455. // V eigen matrix #V by 3
  456. // F #F by 2 list of mesh edges
  457. // or
  458. // F #F by 3 list of mesh faces (must be triangles)
  459. // or
  460. // T #T by 4 list of mesh elements (must be tets)
  461. // Outputs:
  462. // L #F by {1|3|6} list of edge lengths
  463. // for edges, column of lengths
  464. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  465. // for tets, columns correspond to edges
  466. // [3 0],[3 1],[3 2],[1 2],[2 0],[0 1]
  467. //)igl_Qu8mg5v7";
  468. const char *__doc_igl_eigs = R"igl_Qu8mg5v7(See eigs for the documentation.)igl_Qu8mg5v7";
  469. const char *__doc_igl_embree_ambient_occlusion = R"igl_Qu8mg5v7(// Compute ambient occlusion per given point
  470. //
  471. // Inputs:
  472. // ei EmbreeIntersector containing (V,F)
  473. // P #P by 3 list of origin points
  474. // N #P by 3 list of origin normals
  475. // Outputs:
  476. // S #P list of ambient occlusion values between 1 (fully occluded) and
  477. // 0 (not occluded)
  478. //)igl_Qu8mg5v7";
  479. const char *__doc_igl_embree_reorient_facets_raycast = R"igl_Qu8mg5v7(// Orient each component (identified by C) of a mesh (V,F) using ambient
  480. // occlusion such that the front side is less occluded than back side, as
  481. // described in "A Simple Method for Correcting Facet Orientations in
  482. // Polygon Meshes Based on Ray Casting" [Takayama et al. 2014].
  483. //
  484. // Inputs:
  485. // V #V by 3 list of vertex positions
  486. // F #F by 3 list of triangle indices
  487. // rays_total Total number of rays that will be shot
  488. // rays_minimum Minimum number of rays that each patch should receive
  489. // facet_wise Decision made for each face independently, no use of patches
  490. // (i.e., each face is treated as a patch)
  491. // use_parity Use parity mode
  492. // is_verbose Verbose output to cout
  493. // Outputs:
  494. // I #F list of whether face has been flipped
  495. // C #F list of patch ID (output of bfs_orient > manifold patches))igl_Qu8mg5v7";
  496. const char *__doc_igl_find_cross_field_singularities = R"igl_Qu8mg5v7(// Inputs:
  497. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  498. // F #F by 3 eigen Matrix of face (quad) indices
  499. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  500. // across all face edges
  501. // Output:
  502. // isSingularity #V by 1 boolean eigen Vector indicating the presence of a singularity on a vertex
  503. // singularityIndex #V by 1 integer eigen Vector containing the singularity indices
  504. //)igl_Qu8mg5v7";
  505. const char *__doc_igl_fit_rotations = R"igl_Qu8mg5v7(// Known issues: This seems to be implemented in Eigen/Geometry:
  506. // Eigen::umeyama
  507. //
  508. // FIT_ROTATIONS Given an input mesh and new positions find rotations for
  509. // every covariance matrix in a stack of covariance matrices
  510. //
  511. // Inputs:
  512. // S nr*dim by dim stack of covariance matrices
  513. // single_precision whether to use single precision (faster)
  514. // Outputs:
  515. // R dim by dim * nr list of rotations
  516. //)igl_Qu8mg5v7";
  517. const char *__doc_igl_fit_rotations_planar = R"igl_Qu8mg5v7(// FIT_ROTATIONS Given an input mesh and new positions find 2D rotations for
  518. // every vertex that best maps its one ring to the new one ring
  519. //
  520. // Inputs:
  521. // S nr*dim by dim stack of covariance matrices, third column and every
  522. // third row will be ignored
  523. // Outputs:
  524. // R dim by dim * nr list of rotations, third row and third column of each
  525. // rotation will just be identity
  526. //)igl_Qu8mg5v7";
  527. const char *__doc_igl_fit_rotations_SSE = R"igl_Qu8mg5v7(See fit_rotations_SSE for the documentation.)igl_Qu8mg5v7";
  528. const char *__doc_igl_floor = R"igl_Qu8mg5v7(// Floor a given matrix to nearest integers
  529. //
  530. // Inputs:
  531. // X m by n matrix of scalars
  532. // Outputs:
  533. // Y m by n matrix of floored integers)igl_Qu8mg5v7";
  534. const char *__doc_igl_forward_kinematics = R"igl_Qu8mg5v7(// Given a skeleton and a set of relative bone rotations compute absolute
  535. // rigid transformations for each bone.
  536. //
  537. // Inputs:
  538. // C #C by dim list of joint positions
  539. // BE #BE by 2 list of bone edge indices
  540. // P #BE list of parent indices into BE
  541. // dQ #BE list of relative rotations
  542. // dT #BE list of relative translations
  543. // Outputs:
  544. // vQ #BE list of absolute rotations
  545. // vT #BE list of absolute translations)igl_Qu8mg5v7";
  546. const char *__doc_igl_gaussian_curvature = R"igl_Qu8mg5v7(// Compute discrete local integral gaussian curvature (angle deficit, without
  547. // averaging by local area).
  548. //
  549. // Inputs:
  550. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  551. // F #F by 3 eigen Matrix of face (triangle) indices
  552. // Output:
  553. // K #V by 1 eigen Matrix of discrete gaussian curvature values
  554. //)igl_Qu8mg5v7";
  555. const char *__doc_igl_get_seconds = R"igl_Qu8mg5v7(// Return the current time in seconds since program start
  556. //
  557. // Example:
  558. // const auto & tictoc = []()
  559. // {
  560. // static double t_start = igl::get_seconds();
  561. // double diff = igl::get_seconds()-t_start;
  562. // t_start += diff;
  563. // return diff;
  564. // };
  565. // tictoc();
  566. // ... // part 1
  567. // cout<<"part 1: "<<tictoc()<<endl;
  568. // ... // part 2
  569. // cout<<"part 2: "<<tictoc()<<endl;
  570. // ... // etc)igl_Qu8mg5v7";
  571. const char *__doc_igl_grad = R"igl_Qu8mg5v7(// Gradient of a scalar function defined on piecewise linear elements (mesh)
  572. // is constant on each triangle i,j,k:
  573. // grad(Xijk) = (Xj-Xi) * (Vi - Vk)^R90 / 2A + (Xk-Xi) * (Vj - Vi)^R90 / 2A
  574. // where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
  575. // i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
  576. // 90 degrees
  577. //)igl_Qu8mg5v7";
  578. const char *__doc_igl_harmonic = R"igl_Qu8mg5v7(// Compute k-harmonic weight functions "coordinates".
  579. //
  580. //
  581. // Inputs:
  582. // V #V by dim vertex positions
  583. // F #F by simplex-size list of element indices
  584. // b #b boundary indices into V
  585. // bc #b by #W list of boundary values
  586. // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
  587. // Outputs:
  588. // W #V by #W list of weights
  589. //)igl_Qu8mg5v7";
  590. const char *__doc_igl_hsv_to_rgb = R"igl_Qu8mg5v7(// Convert RGB to HSV
  591. //
  592. // Inputs:
  593. // h hue value (degrees: [0,360])
  594. // s saturation value ([0,1])
  595. // v value value ([0,1])
  596. // Outputs:
  597. // r red value ([0,1])
  598. // g green value ([0,1])
  599. // b blue value ([0,1]))igl_Qu8mg5v7";
  600. const char *__doc_igl_internal_angles = R"igl_Qu8mg5v7(// Compute internal angles for a triangle mesh
  601. //
  602. // Inputs:
  603. // V #V by dim eigen Matrix of mesh vertex nD positions
  604. // F #F by poly-size eigen Matrix of face (triangle) indices
  605. // Output:
  606. // K #F by poly-size eigen Matrix of internal angles
  607. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  608. //
  609. // Known Issues:
  610. // if poly-size ≠ 3 then dim must equal 3.)igl_Qu8mg5v7";
  611. const char *__doc_igl_invert_diag = R"igl_Qu8mg5v7(// Templates:
  612. // T should be a eigen sparse matrix primitive type like int or double
  613. // Inputs:
  614. // X an m by n sparse matrix
  615. // Outputs:
  616. // Y an m by n sparse matrix)igl_Qu8mg5v7";
  617. const char *__doc_igl_is_irregular_vertex = R"igl_Qu8mg5v7(// Determine if a vertex is irregular, i.e. it has more than 6 (triangles)
  618. // or 4 (quads) incident edges. Vertices on the boundary are ignored.
  619. //
  620. // Inputs:
  621. // V #V by dim list of vertex positions
  622. // F #F by 3[4] list of triangle[quads] indices
  623. // Returns #V vector of bools revealing whether vertices are singular
  624. //)igl_Qu8mg5v7";
  625. const char *__doc_igl_jet = R"igl_Qu8mg5v7(// JET like MATLAB's jet
  626. //
  627. // Inputs:
  628. // m number of colors
  629. // Outputs:
  630. // J m by list of RGB colors between 0 and 1
  631. //
  632. //#ifndef IGL_NO_EIGEN
  633. // void jet(const int m, Eigen::MatrixXd & J);
  634. //#endif
  635. // Wrapper for directly computing [r,g,b] values for a given factor f between
  636. // 0 and 1
  637. //
  638. // Inputs:
  639. // f factor determining color value as if 0 was min and 1 was max
  640. // Outputs:
  641. // r red value
  642. // g green value
  643. // b blue value)igl_Qu8mg5v7";
  644. const char *__doc_igl_lbs_matrix = R"igl_Qu8mg5v7(// LBS_MATRIX Linear blend skinning can be expressed by V' = M * T where V' is
  645. // a #V by dim matrix of deformed vertex positions (one vertex per row), M is a
  646. // #V by (dim+1)*#T (composed of weights and rest positions) and T is a
  647. // #T*(dim+1) by dim matrix of #T stacked transposed transformation matrices.
  648. // See equations (1) and (2) in "Fast Automatic Skinning Transformations"
  649. // [Jacobson et al 2012]
  650. //
  651. // Inputs:
  652. // V #V by dim list of rest positions
  653. // W #V+ by #T list of weights
  654. // Outputs:
  655. // M #V by #T*(dim+1)
  656. //
  657. // In MATLAB:
  658. // kron(ones(1,size(W,2)),[V ones(size(V,1),1)]).*kron(W,ones(1,size(V,2)+1)))igl_Qu8mg5v7";
  659. const char *__doc_igl_lbs_matrix_column = R"igl_Qu8mg5v7(// LBS_MATRIX construct a matrix that when multiplied against a column of
  660. // affine transformation entries computes new coordinates of the vertices
  661. //
  662. // I'm not sure it makes since that the result is stored as a sparse matrix.
  663. // The number of non-zeros per row *is* dependent on the number of mesh
  664. // vertices and handles.
  665. //
  666. // Inputs:
  667. // V #V by dim list of vertex rest positions
  668. // W #V by #handles list of correspondence weights
  669. // Output:
  670. // M #V * dim by #handles * dim * (dim+1) matrix such that
  671. // new_V(:) = LBS(V,W,A) = reshape(M * A,size(V)), where A is a column
  672. // vectors formed by the entries in each handle's dim by dim+1
  673. // transformation matrix. Specifcally, A =
  674. // reshape(permute(Astack,[3 1 2]),n*dim*(dim+1),1)
  675. // or A = [Lxx;Lyx;Lxy;Lyy;tx;ty], and likewise for other dim
  676. // if Astack(:,:,i) is the dim by (dim+1) transformation at handle i)igl_Qu8mg5v7";
  677. const char *__doc_igl_local_basis = R"igl_Qu8mg5v7(// Compute a local orthogonal reference system for each triangle in the given mesh
  678. // Templates:
  679. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  680. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  681. // Inputs:
  682. // V eigen matrix #V by 3
  683. // F #F by 3 list of mesh faces (must be triangles)
  684. // Outputs:
  685. // B1 eigen matrix #F by 3, each vector is tangent to the triangle
  686. // B2 eigen matrix #F by 3, each vector is tangent to the triangle and perpendicular to B1
  687. // B3 eigen matrix #F by 3, normal of the triangle
  688. //
  689. // See also: adjacency_matrix)igl_Qu8mg5v7";
  690. const char *__doc_igl_lscm = R"igl_Qu8mg5v7(// Compute a Least-squares conformal map parametrization (equivalently
  691. // derived in "Intrinsic Parameterizations of Surface Meshes" [Desbrun et al.
  692. // 2002] and "Least Squares Conformal Maps for Automatic Texture Atlas
  693. // Generation" [Lévy et al. 2002]), though this implementation follows the
  694. // derivation in: "Spectral Conformal Parameterization" [Mullen et al. 2008]
  695. // (note, this does **not** implement the Eigen-decomposition based method in
  696. // [Mullen et al. 2008], which is not equivalent). Input should be a manifold
  697. // mesh (also no unreferenced vertices) and "boundary" (fixed vertices) `b`
  698. // should contain at least two vertices per connected component.
  699. //
  700. // Inputs:
  701. // V #V by 3 list of mesh vertex positions
  702. // F #F by 3 list of mesh faces (must be triangles)
  703. // b #b boundary indices into V
  704. // bc #b by 3 list of boundary values
  705. // Outputs:
  706. // UV #V by 2 list of 2D mesh vertex positions in UV space
  707. // Returns true only on solver success.
  708. //)igl_Qu8mg5v7";
  709. const char *__doc_igl_map_vertices_to_circle = R"igl_Qu8mg5v7(// Map the vertices whose indices are in a given boundary loop (bnd) on the
  710. // unit circle with spacing proportional to the original boundary edge
  711. // lengths.
  712. //
  713. // Inputs:
  714. // V #V by dim list of mesh vertex positions
  715. // b #W list of vertex ids
  716. // Outputs:
  717. // UV #W by 2 list of 2D position on the unit circle for the vertices in b)igl_Qu8mg5v7";
  718. const char *__doc_igl_massmatrix = R"igl_Qu8mg5v7(// Constructs the mass (area) matrix for a given mesh (V,F).
  719. //
  720. // Templates:
  721. // DerivedV derived type of eigen matrix for V (e.g. derived from
  722. // MatrixXd)
  723. // DerivedF derived type of eigen matrix for F (e.g. derived from
  724. // MatrixXi)
  725. // Scalar scalar type for eigen sparse matrix (e.g. double)
  726. // Inputs:
  727. // V #V by dim list of mesh vertex positions
  728. // F #F by simplex_size list of mesh faces (must be triangles)
  729. // type one of the following ints:
  730. // MASSMATRIX_TYPE_BARYCENTRIC barycentric
  731. // MASSMATRIX_TYPE_VORONOI voronoi-hybrid {default}
  732. // MASSMATRIX_TYPE_FULL full {not implemented}
  733. // Outputs:
  734. // M #V by #V mass matrix
  735. //
  736. // See also: adjacency_matrix
  737. //)igl_Qu8mg5v7";
  738. const char *__doc_igl_min_quad_with_fixed_precompute = R"igl_Qu8mg5v7(// Known Bugs: rows of Aeq **should probably** be linearly independent.
  739. // During precomputation, the rows of a Aeq are checked via QR. But in case
  740. // they're not then resulting probably will no longer be sparse: it will be
  741. // slow.
  742. //
  743. // MIN_QUAD_WITH_FIXED Minimize quadratic energy
  744. //
  745. // 0.5*Z'*A*Z + Z'*B + C with
  746. //
  747. // constraints that Z(known) = Y, optionally also subject to the constraints
  748. // Aeq*Z = Beq
  749. //
  750. // Templates:
  751. // T should be a eigen matrix primitive type like int or double
  752. // Inputs:
  753. // A n by n matrix of quadratic coefficients
  754. // known list of indices to known rows in Z
  755. // Y list of fixed values corresponding to known rows in Z
  756. // Aeq m by n list of linear equality constraint coefficients
  757. // pd flag specifying whether A(unknown,unknown) is positive definite
  758. // Outputs:
  759. // data factorization struct with all necessary information to solve
  760. // using min_quad_with_fixed_solve
  761. // Returns true on success, false on error
  762. //
  763. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  764. // secs, igl/min_quad_with_fixed.h 7.1 secs
  765. //)igl_Qu8mg5v7";
  766. const char *__doc_igl_min_quad_with_fixed_solve = R"igl_Qu8mg5v7(// Solves a system previously factored using min_quad_with_fixed_precompute
  767. //
  768. // Template:
  769. // T type of sparse matrix (e.g. double)
  770. // DerivedY type of Y (e.g. derived from VectorXd or MatrixXd)
  771. // DerivedZ type of Z (e.g. derived from VectorXd or MatrixXd)
  772. // Inputs:
  773. // data factorization struct with all necessary precomputation to solve
  774. // B n by 1 column of linear coefficients
  775. // Y b by 1 list of constant fixed values
  776. // Beq m by 1 list of linear equality constraint constant values
  777. // Outputs:
  778. // Z n by cols solution
  779. // sol #unknowns+#lagrange by cols solution to linear system
  780. // Returns true on success, false on error)igl_Qu8mg5v7";
  781. const char *__doc_igl_min_quad_with_fixed = R"igl_Qu8mg5v7(See min_quad_with_fixed for the documentation.)igl_Qu8mg5v7";
  782. const char *__doc_igl_n_polyvector = R"igl_Qu8mg5v7(// Inputs:
  783. // v0, v1 the two #3 by 1 vectors
  784. // normalized boolean, if false, then the vectors are normalized prior to the calculation
  785. // Output:
  786. // 3 by 3 rotation matrix that takes v0 to v1
  787. //)igl_Qu8mg5v7";
  788. const char *__doc_igl_normalize_row_lengths = R"igl_Qu8mg5v7(// Obsolete: just use A.rowwise().normalize() or B=A.rowwise().normalized();
  789. //
  790. // Normalize the rows in A so that their lengths are each 1 and place the new
  791. // entries in B
  792. // Inputs:
  793. // A #rows by k input matrix
  794. // Outputs:
  795. // B #rows by k input matrix, can be the same as A)igl_Qu8mg5v7";
  796. const char *__doc_igl_normalize_row_sums = R"igl_Qu8mg5v7(// Normalize the rows in A so that their sums are each 1 and place the new
  797. // entries in B
  798. // Inputs:
  799. // A #rows by k input matrix
  800. // Outputs:
  801. // B #rows by k input matrix, can be the same as A
  802. //
  803. // Note: This is just calling an Eigen one-liner.)igl_Qu8mg5v7";
  804. const char *__doc_igl_parula = R"igl_Qu8mg5v7(// PARULA like MATLAB's parula
  805. //
  806. // Inputs:
  807. // m number of colors
  808. // Outputs:
  809. // J m by list of RGB colors between 0 and 1
  810. //
  811. // Wrapper for directly computing [r,g,b] values for a given factor f between
  812. // 0 and 1
  813. //
  814. // Inputs:
  815. // f factor determining color value as if 0 was min and 1 was max
  816. // Outputs:
  817. // r red value
  818. // g green value
  819. // b blue value)igl_Qu8mg5v7";
  820. const char *__doc_igl_per_corner_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  821. // Inputs:
  822. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  823. // F #F by 3 eigne Matrix of face (triangle) indices
  824. // corner_threshold threshold in degrees on sharp angles
  825. // Output:
  826. // CN #F*3 by 3 eigen Matrix of mesh vertex 3D normals, where the normal
  827. // for corner F(i,j) is at CN(i*3+j,:) )igl_Qu8mg5v7";
  828. const char *__doc_igl_per_edge_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  829. // Inputs:
  830. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  831. // F #F by 3 eigen Matrix of face (triangle) indices
  832. // weight weighting type
  833. // FN #F by 3 matrix of 3D face normals per face
  834. // Output:
  835. // N #2 by 3 matrix of mesh edge 3D normals per row
  836. // E #E by 2 matrix of edge indices per row
  837. // EMAP #E by 1 matrix of indices from all edges to E
  838. //)igl_Qu8mg5v7";
  839. const char *__doc_igl_per_face_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  840. // Inputs:
  841. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  842. // F #F by 3 eigen Matrix of face (triangle) indices
  843. // Z 3 vector normal given to faces with degenerate normal.
  844. // Output:
  845. // N #F by 3 eigen Matrix of mesh face (triangle) 3D normals
  846. //
  847. // Example:
  848. // // Give degenerate faces (1/3,1/3,1/3)^0.5
  849. // per_face_normals(V,F,Vector3d(1,1,1).normalized(),N);)igl_Qu8mg5v7";
  850. const char *__doc_igl_per_face_normals_stable = R"igl_Qu8mg5v7(// Special version where order of face indices is guaranteed not to effect
  851. // output.)igl_Qu8mg5v7";
  852. const char *__doc_igl_per_vertex_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  853. // Inputs:
  854. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  855. // F #F by 3 eigne Matrix of face (triangle) indices
  856. // weighting Weighting type
  857. // Output:
  858. // N #V by 3 eigen Matrix of mesh vertex 3D normals)igl_Qu8mg5v7";
  859. const char *__doc_igl_planarize_quad_mesh = R"igl_Qu8mg5v7(// Inputs:
  860. // Vin #V by 3 eigen Matrix of mesh vertex 3D positions
  861. // F #F by 4 eigen Matrix of face (quad) indices
  862. // maxIter maximum numbers of iterations
  863. // threshold minimum allowed threshold for non-planarity
  864. // Output:
  865. // Vout #V by 3 eigen Matrix of planar mesh vertex 3D positions
  866. //)igl_Qu8mg5v7";
  867. const char *__doc_igl_png_readPNG = R"igl_Qu8mg5v7(// Read an image from a .png file into 4 memory buffers
  868. //
  869. // Input:
  870. // png_file path to .png file
  871. // Output:
  872. // R,G,B,A texture channels
  873. // Returns true on success, false on failure
  874. //)igl_Qu8mg5v7";
  875. const char *__doc_igl_png_writePNG = R"igl_Qu8mg5v7(// Writes an image to a png file
  876. //
  877. // Input:
  878. // R,G,B,A texture channels
  879. // Output:
  880. // png_file path to .png file
  881. // Returns true on success, false on failure
  882. //)igl_Qu8mg5v7";
  883. const char *__doc_igl_point_mesh_squared_distance = R"igl_Qu8mg5v7(// Compute distances from a set of points P to a triangle mesh (V,F)
  884. //
  885. // Inputs:
  886. // P #P by 3 list of query point positions
  887. // V #V by 3 list of vertex positions
  888. // Ele #Ele by (3|2|1) list of (triangle|edge|point) indices
  889. // Outputs:
  890. // sqrD #P list of smallest squared distances
  891. // I #P list of primitive indices corresponding to smallest distances
  892. // C #P by 3 list of closest points
  893. //
  894. // Known bugs: This only computes distances to given primitivess. So
  895. // unreferenced vertices are ignored. However, degenerate primitives are
  896. // handled correctly: triangle [1 2 2] is treated as a segment [1 2], and
  897. // triangle [1 1 1] is treated as a point. So one _could_ add extra
  898. // combinatorially degenerate rows to Ele for all unreferenced vertices to
  899. // also get distances to points.)igl_Qu8mg5v7";
  900. const char *__doc_igl_polar_svd = R"igl_Qu8mg5v7(// Computes the polar decomposition (R,T) of a matrix A using SVD singular
  901. // value decomposition
  902. //
  903. // Inputs:
  904. // A 3 by 3 matrix to be decomposed
  905. // Outputs:
  906. // R 3 by 3 rotation matrix part of decomposition (**always rotataion**)
  907. // T 3 by 3 stretch matrix part of decomposition
  908. // U 3 by 3 left-singular vectors
  909. // S 3 by 1 singular values
  910. // V 3 by 3 right-singular vectors
  911. //
  912. //)igl_Qu8mg5v7";
  913. const char *__doc_igl_principal_curvature = R"igl_Qu8mg5v7(// Compute the principal curvature directions and magnitude of the given triangle mesh
  914. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  915. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  916. // Inputs:
  917. // V eigen matrix #V by 3
  918. // F #F by 3 list of mesh faces (must be triangles)
  919. // radius controls the size of the neighbourhood used, 1 = average edge lenght
  920. //
  921. // Outputs:
  922. // PD1 #V by 3 maximal curvature direction for each vertex.
  923. // PD2 #V by 3 minimal curvature direction for each vertex.
  924. // PV1 #V by 1 maximal curvature value for each vertex.
  925. // PV2 #V by 1 minimal curvature value for each vertex.
  926. //
  927. // See also: average_onto_faces, average_onto_vertices
  928. //
  929. // This function has been developed by: Nikolas De Giorgis, Luigi Rocca and Enrico Puppo.
  930. // The algorithm is based on:
  931. // Efficient Multi-scale Curvature and Crease Estimation
  932. // Daniele Panozzo, Enrico Puppo, Luigi Rocca
  933. // GraVisMa, 2010)igl_Qu8mg5v7";
  934. const char *__doc_igl_quad_planarity = R"igl_Qu8mg5v7(// Compute planarity of the faces of a quad mesh
  935. // Inputs:
  936. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  937. // F #F by 4 eigen Matrix of face (quad) indices
  938. // Output:
  939. // P #F by 1 eigen Matrix of mesh face (quad) planarities
  940. //)igl_Qu8mg5v7";
  941. const char *__doc_igl_randperm = R"igl_Qu8mg5v7(// Like matlab's randperm(n) but minus 1
  942. //
  943. // Inputs:
  944. // n number of elements
  945. // Outputs:
  946. // I n list of rand permutation of 0:n-1)igl_Qu8mg5v7";
  947. const char *__doc_igl_readDMAT = R"igl_Qu8mg5v7(See readDMAT for the documentation.)igl_Qu8mg5v7";
  948. const char *__doc_igl_readMESH = R"igl_Qu8mg5v7(// load a tetrahedral volume mesh from a .mesh file
  949. //
  950. // Templates:
  951. // Scalar type for positions and vectors (will be read as double and cast
  952. // to Scalar)
  953. // Index type for indices (will be read as int and cast to Index)
  954. // Input:
  955. // mesh_file_name path of .mesh file
  956. // Outputs:
  957. // V double matrix of vertex positions #V by 3
  958. // T #T list of tet indices into vertex positions
  959. // F #F list of face indices into vertex positions
  960. //
  961. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  962. const char *__doc_igl_readOBJ = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  963. // and texture coordinates. Mesh may have faces of any number of degree
  964. //
  965. // Templates:
  966. // Scalar type for positions and vectors (will be read as double and cast
  967. // to Scalar)
  968. // Index type for indices (will be read as int and cast to Index)
  969. // Inputs:
  970. // str path to .obj file
  971. // Outputs:
  972. // V double matrix of vertex positions #V by 3
  973. // TC double matrix of texture coordinats #TC by 2
  974. // N double matrix of corner normals #N by 3
  975. // F #F list of face indices into vertex positions
  976. // FTC #F list of face indices into vertex texture coordinates
  977. // FN #F list of face indices into vertex normals
  978. // Returns true on success, false on errors)igl_Qu8mg5v7";
  979. const char *__doc_igl_readOFF = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  980. // and texture coordinates. Mesh may have faces of any number of degree
  981. //
  982. // Templates:
  983. // Scalar type for positions and vectors (will be read as double and cast
  984. // to Scalar)
  985. // Index type for indices (will be read as int and cast to Index)
  986. // Inputs:
  987. // str path to .obj file
  988. // Outputs:
  989. // V double matrix of vertex positions #V by 3
  990. // F #F list of face indices into vertex positions
  991. // TC double matrix of texture coordinats #TC by 2
  992. // FTC #F list of face indices into vertex texture coordinates
  993. // N double matrix of corner normals #N by 3
  994. // FN #F list of face indices into vertex normals
  995. // Returns true on success, false on errors)igl_Qu8mg5v7";
  996. const char *__doc_igl_readTGF = R"igl_Qu8mg5v7(// READTGF
  997. //
  998. // [V,E,P,BE,CE,PE] = readTGF(filename)
  999. //
  1000. // Read a graph from a .tgf file
  1001. //
  1002. // Input:
  1003. // filename .tgf file name
  1004. // Ouput:
  1005. // V # vertices by 3 list of vertex positions
  1006. // E # edges by 2 list of edge indices
  1007. // P # point-handles list of point handle indices
  1008. // BE # bone-edges by 2 list of bone-edge indices
  1009. // CE # cage-edges by 2 list of cage-edge indices
  1010. // PE # pseudo-edges by 2 list of pseudo-edge indices
  1011. //
  1012. // Assumes that graph vertices are 3 dimensional)igl_Qu8mg5v7";
  1013. const char *__doc_igl_read_triangle_mesh = R"igl_Qu8mg5v7(// read mesh from an ascii file with automatic detection of file format.
  1014. // supported: obj, off, stl, wrl, ply, mesh)
  1015. //
  1016. // Templates:
  1017. // Scalar type for positions and vectors (will be read as double and cast
  1018. // to Scalar)
  1019. // Index type for indices (will be read as int and cast to Index)
  1020. // Inputs:
  1021. // str path to file
  1022. // Outputs:
  1023. // V eigen double matrix #V by 3
  1024. // F eigen int matrix #F by 3
  1025. // Returns true iff success)igl_Qu8mg5v7";
  1026. const char *__doc_igl_rotate_vectors = R"igl_Qu8mg5v7(// Rotate the vectors V by A radiants on the tangent plane spanned by B1 and
  1027. // B2
  1028. //
  1029. // Inputs:
  1030. // V #V by 3 eigen Matrix of vectors
  1031. // A #V eigen vector of rotation angles or a single angle to be applied
  1032. // to all vectors
  1033. // B1 #V by 3 eigen Matrix of base vector 1
  1034. // B2 #V by 3 eigen Matrix of base vector 2
  1035. //
  1036. // Output:
  1037. // Returns the rotated vectors
  1038. //)igl_Qu8mg5v7";
  1039. const char *__doc_igl_setdiff = R"igl_Qu8mg5v7(// Set difference of elements of matrices
  1040. //
  1041. // Inputs:
  1042. // A m-long vector of indices
  1043. // B n-long vector of indices
  1044. // Outputs:
  1045. // C (k<=m)-long vector of unique elements appearing in A but not in B
  1046. // IA (k<=m)-long list of indices into A so that C = A(IA)
  1047. //)igl_Qu8mg5v7";
  1048. const char *__doc_igl_signed_distance = R"igl_Qu8mg5v7(// Computes signed distance to a mesh
  1049. //
  1050. // Inputs:
  1051. // P #P by 3 list of query point positions
  1052. // V #V by 3 list of vertex positions
  1053. // F #F by ss list of triangle indices, ss should be 3 unless sign_type ==
  1054. // SIGNED_DISTANCE_TYPE_UNSIGNED
  1055. // sign_type method for computing distance _sign_ S
  1056. // Outputs:
  1057. // S #P list of smallest signed distances
  1058. // I #P list of facet indices corresponding to smallest distances
  1059. // C #P by 3 list of closest points
  1060. // N #P by 3 list of closest normals (only set if
  1061. // sign_type=SIGNED_DISTANCE_TYPE_PSEUDONORMAL)
  1062. //
  1063. // Known bugs: This only computes distances to triangles. So unreferenced
  1064. // vertices and degenerate triangles are ignored.)igl_Qu8mg5v7";
  1065. const char *__doc_igl_signed_distance_pseudonormal = R"igl_Qu8mg5v7(// Computes signed distance to mesh
  1066. //
  1067. // Inputs:
  1068. // tree AABB acceleration tree (see AABB.h)
  1069. // F #F by 3 list of triangle indices
  1070. // FN #F by 3 list of triangle normals
  1071. // VN #V by 3 list of vertex normals (ANGLE WEIGHTING)
  1072. // EN #E by 3 list of edge normals (UNIFORM WEIGHTING)
  1073. // EMAP #F*3 mapping edges in F to E
  1074. // q Query point
  1075. // Returns signed distance to mesh
  1076. //)igl_Qu8mg5v7";
  1077. const char *__doc_igl_signed_distance_winding_number = R"igl_Qu8mg5v7(// Inputs:
  1078. // tree AABB acceleration tree (see cgal/point_mesh_squared_distance.h)
  1079. // hier Winding number evaluation hierarchy
  1080. // q Query point
  1081. // Returns signed distance to mesh)igl_Qu8mg5v7";
  1082. const char *__doc_igl_slice = R"igl_Qu8mg5v7(// Act like the matlab X(row_indices,col_indices) operator, where
  1083. // row_indices, col_indices are non-negative integer indices.
  1084. //
  1085. // Inputs:
  1086. // X m by n matrix
  1087. // R list of row indices
  1088. // C list of column indices
  1089. // Output:
  1090. // Y #R by #C matrix
  1091. //
  1092. // See also: slice_mask)igl_Qu8mg5v7";
  1093. const char *__doc_igl_slice_into = R"igl_Qu8mg5v7(// Act like the matlab Y(row_indices,col_indices) = X
  1094. //
  1095. // Inputs:
  1096. // X xm by xn rhs matrix
  1097. // R list of row indices
  1098. // C list of column indices
  1099. // Y ym by yn lhs matrix
  1100. // Output:
  1101. // Y ym by yn lhs matrix, same as input but Y(R,C) = X)igl_Qu8mg5v7";
  1102. const char *__doc_igl_slice_mask = R"igl_Qu8mg5v7(// Act like the matlab X(row_mask,col_mask) operator, where
  1103. // row_mask, col_mask are non-negative integer indices.
  1104. //
  1105. // Inputs:
  1106. // X m by n matrix
  1107. // R m list of row bools
  1108. // C n list of column bools
  1109. // Output:
  1110. // Y #trues-in-R by #trues-in-C matrix
  1111. //
  1112. // See also: slice_mask)igl_Qu8mg5v7";
  1113. const char *__doc_igl_slice_tets = R"igl_Qu8mg5v7(// SLICE_TETS Slice through a tet mesh (V,T) along a given plane (via its
  1114. // implicit equation).
  1115. //
  1116. // Inputs:
  1117. // V #V by 3 list of tet mesh vertices
  1118. // T #T by 4 list of tet indices into V
  1119. // plane list of 4 coefficients in the plane equation: [x y z 1]'*plane = 0
  1120. // Optional:
  1121. // 'Manifold' followed by whether to stitch together triangles into a
  1122. // manifold mesh {true}: results in more compact U but slightly slower.
  1123. // Outputs:
  1124. // U #U by 3 list of triangle mesh vertices along slice
  1125. // G #G by 3 list of triangles indices into U
  1126. // J #G list of indices into T revealing from which tet each faces comes
  1127. // BC #U by #V list of barycentric coordinates (or more generally: linear
  1128. // interpolation coordinates) so that U = BC*V
  1129. // )igl_Qu8mg5v7";
  1130. const char *__doc_igl_sortrows = R"igl_Qu8mg5v7(// Act like matlab's [Y,I] = sortrows(X)
  1131. //
  1132. // Templates:
  1133. // DerivedX derived scalar type, e.g. MatrixXi or MatrixXd
  1134. // DerivedI derived integer type, e.g. MatrixXi
  1135. // Inputs:
  1136. // X m by n matrix whose entries are to be sorted
  1137. // ascending sort ascending (true, matlab default) or descending (false)
  1138. // Outputs:
  1139. // Y m by n matrix whose entries are sorted (**should not** be same
  1140. // reference as X)
  1141. // I m list of indices so that
  1142. // Y = X(I,:);)igl_Qu8mg5v7";
  1143. const char *__doc_igl_triangle_triangulate = R"igl_Qu8mg5v7(// Triangulate the interior of a polygon using the triangle library.
  1144. //
  1145. // Inputs:
  1146. // V #V by 2 list of 2D vertex positions
  1147. // E #E by 2 list of vertex ids forming unoriented edges of the boundary of the polygon
  1148. // H #H by 2 coordinates of points contained inside holes of the polygon
  1149. // flags string of options pass to triangle (see triangle documentation)
  1150. // Outputs:
  1151. // V2 #V2 by 2 coordinates of the vertives of the generated triangulation
  1152. // F2 #F2 by 3 list of indices forming the faces of the generated triangulation
  1153. //
  1154. // TODO: expose the option to prevent Steiner points on the boundary
  1155. //)igl_Qu8mg5v7";
  1156. const char *__doc_igl_unique = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X)
  1157. //
  1158. // Templates:
  1159. // T comparable type T
  1160. // Inputs:
  1161. // A #A vector of type T
  1162. // Outputs:
  1163. // C #C vector of unique entries in A
  1164. // IA #C index vector so that C = A(IA);
  1165. // IC #A index vector so that A = C(IC);)igl_Qu8mg5v7";
  1166. const char *__doc_igl_unique_rows = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X,'rows')
  1167. //
  1168. // Templates:
  1169. // DerivedA derived scalar type, e.g. MatrixXi or MatrixXd
  1170. // DerivedIA derived integer type, e.g. MatrixXi
  1171. // DerivedIC derived integer type, e.g. MatrixXi
  1172. // Inputs:
  1173. // A m by n matrix whose entries are to unique'd according to rows
  1174. // Outputs:
  1175. // C #C vector of unique rows in A
  1176. // IA #C index vector so that C = A(IA,:);
  1177. // IC #A index vector so that A = C(IC,:);)igl_Qu8mg5v7";
  1178. const char *__doc_igl_unproject_onto_mesh = R"igl_Qu8mg5v7(// Unproject a screen location (using current opengl viewport, projection, and
  1179. // model view) to a 3D position _onto_ a given mesh, if the ray through the
  1180. // given screen location (x,y) _hits_ the mesh.
  1181. //
  1182. // Inputs:
  1183. // pos screen space coordinates
  1184. // model model matrix
  1185. // proj projection matrix
  1186. // viewport vieweport vector
  1187. // V #V by 3 list of mesh vertex positions
  1188. // F #F by 3 list of mesh triangle indices into V
  1189. // Outputs:
  1190. // fid id of the first face hit
  1191. // bc barycentric coordinates of hit
  1192. // Returns true if there's a hit)igl_Qu8mg5v7";
  1193. const char *__doc_igl_upsample = R"igl_Qu8mg5v7(// Subdivide a mesh without moving vertices: loop subdivision but odd
  1194. // vertices stay put and even vertices are just edge midpoints
  1195. //
  1196. // Templates:
  1197. // MatV matrix for vertex positions, e.g. MatrixXd
  1198. // MatF matrix for vertex positions, e.g. MatrixXi
  1199. // Inputs:
  1200. // V #V by dim mesh vertices
  1201. // F #F by 3 mesh triangles
  1202. // Outputs:
  1203. // NV new vertex positions, V is guaranteed to be at top
  1204. // NF new list of face indices
  1205. //
  1206. // NOTE: V should not be the same as NV,
  1207. // NOTE: F should not be the same as NF, use other proto
  1208. //
  1209. // Known issues:
  1210. // - assumes (V,F) is edge-manifold.)igl_Qu8mg5v7";
  1211. const char *__doc_igl_winding_number = R"igl_Qu8mg5v7(// WINDING_NUMBER Compute the sum of solid angles of a triangle/tetrahedron
  1212. // described by points (vectors) V
  1213. //
  1214. // Templates:
  1215. // dim dimension of input
  1216. // Inputs:
  1217. // V n by 3 list of vertex positions
  1218. // F #F by 3 list of triangle indices, minimum index is 0
  1219. // O no by 3 list of origin positions
  1220. // Outputs:
  1221. // S no by 1 list of winding numbers
  1222. //
  1223. // 3d)igl_Qu8mg5v7";
  1224. const char *__doc_igl_winding_number_3 = R"igl_Qu8mg5v7(// Inputs:
  1225. // V pointer to array containing #V by 3 vertex positions along rows,
  1226. // given in column major order
  1227. // n number of mesh vertices
  1228. // F pointer to array containing #F by 3 face indices along rows,
  1229. // given in column major order
  1230. // m number of faces
  1231. // O pointer to array containing #O by 3 query positions along rows,
  1232. // given in column major order
  1233. // no number of origins
  1234. // Outputs:
  1235. // S no by 1 list of winding numbers)igl_Qu8mg5v7";
  1236. const char *__doc_igl_winding_number_2 = R"igl_Qu8mg5v7(//// Only one evaluation origin
  1237. //template <typename DerivedF>
  1238. //IGL_INLINE void winding_number_3(
  1239. // const double * V,
  1240. // const int n,
  1241. // const DerivedF * F,
  1242. // const int m,
  1243. // const double * O,
  1244. // double * S);
  1245. // 2d)igl_Qu8mg5v7";
  1246. const char *__doc_igl_writeMESH = R"igl_Qu8mg5v7(// save a tetrahedral volume mesh to a .mesh file
  1247. //
  1248. // Templates:
  1249. // Scalar type for positions and vectors (will be cast as double)
  1250. // Index type for indices (will be cast to int)
  1251. // Input:
  1252. // mesh_file_name path of .mesh file
  1253. // V double matrix of vertex positions #V by 3
  1254. // T #T list of tet indices into vertex positions
  1255. // F #F list of face indices into vertex positions
  1256. //
  1257. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  1258. const char *__doc_igl_writeOBJ = R"igl_Qu8mg5v7(// Write a mesh in an ascii obj file
  1259. // Inputs:
  1260. // str path to outputfile
  1261. // V #V by 3 mesh vertex positions
  1262. // F #F by 3|4 mesh indices into V
  1263. // CN #CN by 3 normal vectors
  1264. // FN #F by 3|4 corner normal indices into CN
  1265. // TC #TC by 2|3 texture coordinates
  1266. // FTC #F by 3|4 corner texture coord indices into TC
  1267. // Returns true on success, false on error)igl_Qu8mg5v7";