order_facets_around_edges.cpp 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247
  1. #include "order_facets_around_edges.h"
  2. #include "../sort_angles.h"
  3. #include <type_traits>
  4. #include <CGAL/Exact_predicates_exact_constructions_kernel.h>
  5. template<
  6. typename DerivedV,
  7. typename DerivedF,
  8. typename DerivedN,
  9. typename DerivedE,
  10. typename DeriveduE,
  11. typename DerivedEMAP,
  12. typename uE2EType,
  13. typename uE2oEType,
  14. typename uE2CType >
  15. IGL_INLINE
  16. typename std::enable_if<!std::is_same<typename DerivedV::Scalar,
  17. typename CGAL::Exact_predicates_exact_constructions_kernel::FT>::value, void>::type
  18. igl::cgal::order_facets_around_edges(
  19. const Eigen::PlainObjectBase<DerivedV>& V,
  20. const Eigen::PlainObjectBase<DerivedF>& F,
  21. const Eigen::PlainObjectBase<DerivedN>& N,
  22. const Eigen::PlainObjectBase<DerivedE>& E,
  23. const Eigen::PlainObjectBase<DeriveduE>& uE,
  24. const Eigen::PlainObjectBase<DerivedEMAP>& EMAP,
  25. const std::vector<std::vector<uE2EType> >& uE2E,
  26. std::vector<std::vector<uE2oEType> >& uE2oE,
  27. std::vector<std::vector<uE2CType > >& uE2C ) {
  28. typedef Eigen::Matrix<typename DerivedN::Scalar, 3, 1> Vector3F;
  29. const typename DerivedV::Scalar EPS = 1e-12;
  30. const size_t num_faces = F.rows();
  31. const size_t num_undirected_edges = uE.rows();
  32. auto edge_index_to_face_index = [&](size_t ei) { return ei % num_faces; };
  33. auto edge_index_to_corner_index = [&](size_t ei) { return ei / num_faces; };
  34. uE2oE.resize(num_undirected_edges);
  35. uE2C.resize(num_undirected_edges);
  36. for(size_t ui = 0;ui<num_undirected_edges;ui++)
  37. {
  38. const auto& adj_edges = uE2E[ui];
  39. const size_t edge_valance = adj_edges.size();
  40. assert(edge_valance > 0);
  41. const auto ref_edge = adj_edges[0];
  42. const auto ref_face = edge_index_to_face_index(ref_edge);
  43. Vector3F ref_normal = N.row(ref_face);
  44. const auto ref_corner_o = edge_index_to_corner_index(ref_edge);
  45. const auto ref_corner_s = (ref_corner_o+1)%3;
  46. const auto ref_corner_d = (ref_corner_o+2)%3;
  47. const typename DerivedF::Scalar o = F(ref_face, ref_corner_o);
  48. const typename DerivedF::Scalar s = F(ref_face, ref_corner_s);
  49. const typename DerivedF::Scalar d = F(ref_face, ref_corner_d);
  50. Vector3F edge = V.row(d) - V.row(s);
  51. auto edge_len = edge.norm();
  52. bool degenerated = edge_len < EPS;
  53. if (degenerated) {
  54. if (edge_valance <= 2) {
  55. // There is only one way to order 2 or less faces.
  56. edge.setZero();
  57. } else {
  58. edge.setZero();
  59. Eigen::Matrix<typename DerivedN::Scalar, Eigen::Dynamic, 3>
  60. normals(edge_valance, 3);
  61. for (size_t fei=0; fei<edge_valance; fei++) {
  62. const auto fe = adj_edges[fei];
  63. const auto f = edge_index_to_face_index(fe);
  64. normals.row(fei) = N.row(f);
  65. }
  66. for (size_t i=0; i<edge_valance; i++) {
  67. size_t j = (i+1) % edge_valance;
  68. Vector3F ni = normals.row(i);
  69. Vector3F nj = normals.row(j);
  70. edge = ni.cross(nj);
  71. edge_len = edge.norm();
  72. if (edge_len >= EPS) {
  73. edge.normalize();
  74. break;
  75. }
  76. }
  77. // Ensure edge direction are consistent with reference face.
  78. Vector3F in_face_vec = V.row(o) - V.row(s);
  79. if (edge.cross(in_face_vec).dot(ref_normal) < 0) {
  80. edge *= -1;
  81. }
  82. if (edge.norm() < EPS) {
  83. std::cerr << "=====================================" << std::endl;
  84. std::cerr << " ui: " << ui << std::endl;
  85. std::cerr << "edge: " << ref_edge << std::endl;
  86. std::cerr << "face: " << ref_face << std::endl;
  87. std::cerr << " vs: " << V.row(s) << std::endl;
  88. std::cerr << " vd: " << V.row(d) << std::endl;
  89. std::cerr << "adj face normals: " << std::endl;
  90. std::cerr << normals << std::endl;
  91. std::cerr << "Very degenerated case detected:" << std::endl;
  92. std::cerr << "Near zero edge surrounded by "
  93. << edge_valance << " neearly colinear faces" <<
  94. std::endl;
  95. std::cerr << "=====================================" << std::endl;
  96. }
  97. }
  98. } else {
  99. edge.normalize();
  100. }
  101. Eigen::MatrixXd angle_data(edge_valance, 3);
  102. std::vector<bool> cons(edge_valance);
  103. for (size_t fei=0; fei<edge_valance; fei++) {
  104. const auto fe = adj_edges[fei];
  105. const auto f = edge_index_to_face_index(fe);
  106. const auto c = edge_index_to_corner_index(fe);
  107. cons[fei] = (d == F(f, (c+1)%3));
  108. assert( cons[fei] || (d == F(f,(c+2)%3)));
  109. assert(!cons[fei] || (s == F(f,(c+2)%3)));
  110. assert(!cons[fei] || (d == F(f,(c+1)%3)));
  111. Vector3F n = N.row(f);
  112. angle_data(fei, 0) = ref_normal.cross(n).dot(edge);
  113. angle_data(fei, 1) = ref_normal.dot(n);
  114. if (cons[fei]) {
  115. angle_data(fei, 0) *= -1;
  116. angle_data(fei, 1) *= -1;
  117. }
  118. angle_data(fei, 0) *= -1; // Sort clockwise.
  119. angle_data(fei, 2) = (cons[fei]?1.:-1.)*(f+1);
  120. }
  121. Eigen::VectorXi order;
  122. igl::sort_angles(angle_data, order);
  123. auto& ordered_edges = uE2oE[ui];
  124. auto& consistency = uE2C[ui];
  125. ordered_edges.resize(edge_valance);
  126. consistency.resize(edge_valance);
  127. for (size_t fei=0; fei<edge_valance; fei++) {
  128. ordered_edges[fei] = adj_edges[order[fei]];
  129. consistency[fei] = cons[order[fei]];
  130. }
  131. }
  132. }
  133. template<
  134. typename DerivedV,
  135. typename DerivedF,
  136. typename DerivedN,
  137. typename DerivedE,
  138. typename DeriveduE,
  139. typename DerivedEMAP,
  140. typename uE2EType,
  141. typename uE2oEType,
  142. typename uE2CType >
  143. IGL_INLINE
  144. typename std::enable_if<std::is_same<typename DerivedV::Scalar,
  145. typename CGAL::Exact_predicates_exact_constructions_kernel::FT>::value, void>::type
  146. igl::cgal::order_facets_around_edges(
  147. const Eigen::PlainObjectBase<DerivedV>& V,
  148. const Eigen::PlainObjectBase<DerivedF>& F,
  149. const Eigen::PlainObjectBase<DerivedN>& N,
  150. const Eigen::PlainObjectBase<DerivedE>& E,
  151. const Eigen::PlainObjectBase<DeriveduE>& uE,
  152. const Eigen::PlainObjectBase<DerivedEMAP>& EMAP,
  153. const std::vector<std::vector<uE2EType> >& uE2E,
  154. std::vector<std::vector<uE2oEType> >& uE2oE,
  155. std::vector<std::vector<uE2CType > >& uE2C ) {
  156. typedef Eigen::Matrix<typename DerivedN::Scalar, 3, 1> Vector3F;
  157. typedef Eigen::Matrix<typename DerivedV::Scalar, 3, 1> Vector3E;
  158. const typename DerivedV::Scalar EPS = 1e-12;
  159. const size_t num_faces = F.rows();
  160. const size_t num_undirected_edges = uE.rows();
  161. auto edge_index_to_face_index = [&](size_t ei) { return ei % num_faces; };
  162. auto edge_index_to_corner_index = [&](size_t ei) { return ei / num_faces; };
  163. uE2oE.resize(num_undirected_edges);
  164. uE2C.resize(num_undirected_edges);
  165. for(size_t ui = 0;ui<num_undirected_edges;ui++)
  166. {
  167. const auto& adj_edges = uE2E[ui];
  168. const size_t edge_valance = adj_edges.size();
  169. assert(edge_valance > 0);
  170. const auto ref_edge = adj_edges[0];
  171. const auto ref_face = edge_index_to_face_index(ref_edge);
  172. Vector3F ref_normal = N.row(ref_face);
  173. const auto ref_corner_o = edge_index_to_corner_index(ref_edge);
  174. const auto ref_corner_s = (ref_corner_o+1)%3;
  175. const auto ref_corner_d = (ref_corner_o+2)%3;
  176. const typename DerivedF::Scalar o = F(ref_face, ref_corner_o);
  177. const typename DerivedF::Scalar s = F(ref_face, ref_corner_s);
  178. const typename DerivedF::Scalar d = F(ref_face, ref_corner_d);
  179. Vector3E exact_edge = V.row(d) - V.row(s);
  180. exact_edge.array() /= exact_edge.squaredNorm();
  181. Vector3F edge(
  182. CGAL::to_double(exact_edge[0]),
  183. CGAL::to_double(exact_edge[1]),
  184. CGAL::to_double(exact_edge[2]));
  185. edge.normalize();
  186. Eigen::MatrixXd angle_data(edge_valance, 3);
  187. std::vector<bool> cons(edge_valance);
  188. for (size_t fei=0; fei<edge_valance; fei++) {
  189. const auto fe = adj_edges[fei];
  190. const auto f = edge_index_to_face_index(fe);
  191. const auto c = edge_index_to_corner_index(fe);
  192. cons[fei] = (d == F(f, (c+1)%3));
  193. assert( cons[fei] || (d == F(f,(c+2)%3)));
  194. assert(!cons[fei] || (s == F(f,(c+2)%3)));
  195. assert(!cons[fei] || (d == F(f,(c+1)%3)));
  196. Vector3F n = N.row(f);
  197. angle_data(fei, 0) = ref_normal.cross(n).dot(edge);
  198. angle_data(fei, 1) = ref_normal.dot(n);
  199. if (cons[fei]) {
  200. angle_data(fei, 0) *= -1;
  201. angle_data(fei, 1) *= -1;
  202. }
  203. angle_data(fei, 0) *= -1; // Sort clockwise.
  204. angle_data(fei, 2) = (cons[fei]?1.:-1.)*(f+1);
  205. }
  206. Eigen::VectorXi order;
  207. igl::sort_angles(angle_data, order);
  208. auto& ordered_edges = uE2oE[ui];
  209. auto& consistency = uE2C[ui];
  210. ordered_edges.resize(edge_valance);
  211. consistency.resize(edge_valance);
  212. for (size_t fei=0; fei<edge_valance; fei++) {
  213. ordered_edges[fei] = adj_edges[order[fei]];
  214. consistency[fei] = cons[order[fei]];
  215. }
  216. }
  217. }