order_facets_around_edge.cpp 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211
  1. #include "order_facets_around_edge.h"
  2. #include <CGAL/Exact_predicates_exact_constructions_kernel.h>
  3. namespace igl {
  4. namespace cgal {
  5. namespace order_facets_around_edges_helper {
  6. template<typename T>
  7. std::vector<size_t> index_sort(const std::vector<T>& data) {
  8. const size_t len = data.size();
  9. std::vector<size_t> order(len);
  10. for (size_t i=0; i<len; i++) order[i] = i;
  11. auto comp = [&](size_t i, size_t j) {
  12. return data[i] < data[j];
  13. };
  14. std::sort(order.begin(), order.end(), comp);
  15. return order;
  16. }
  17. }
  18. }
  19. }
  20. // adj_faces contains signed index starting from +- 1.
  21. template<
  22. typename DerivedV,
  23. typename DerivedF,
  24. typename DerivedI >
  25. void igl::cgal::order_facets_around_edge(
  26. const Eigen::PlainObjectBase<DerivedV>& V,
  27. const Eigen::PlainObjectBase<DerivedF>& F,
  28. size_t s, size_t d,
  29. const std::vector<int>& adj_faces,
  30. Eigen::PlainObjectBase<DerivedI>& order) {
  31. using namespace igl::cgal::order_facets_around_edges_helper;
  32. // Although we only need exact predicates in the algorithm,
  33. // exact constructions are needed to avoid degeneracies due to
  34. // casting to double.
  35. typedef CGAL::Exact_predicates_exact_constructions_kernel K;
  36. typedef K::Point_3 Point_3;
  37. typedef K::Plane_3 Plane_3;
  38. auto get_face_index = [&](int adj_f)->size_t{
  39. return abs(adj_f) - 1;
  40. };
  41. auto get_opposite_vertex = [&](size_t fid)->size_t {
  42. if (F(fid, 0) != s && F(fid, 0) != d) return F(fid, 0);
  43. if (F(fid, 1) != s && F(fid, 1) != d) return F(fid, 1);
  44. if (F(fid, 2) != s && F(fid, 2) != d) return F(fid, 2);
  45. assert(false);
  46. return -1;
  47. };
  48. // Handle base cases
  49. if (adj_faces.size() == 0) {
  50. order.resize(0, 1);
  51. return;
  52. } else if (adj_faces.size() == 1) {
  53. order.resize(1, 1);
  54. order(0, 0) = 0;
  55. return;
  56. } else if (adj_faces.size() == 2) {
  57. const size_t o1 =
  58. get_opposite_vertex(get_face_index(adj_faces[0]));
  59. const size_t o2 =
  60. get_opposite_vertex(get_face_index(adj_faces[1]));
  61. const Point_3 ps(V(s, 0), V(s, 1), V(s, 2));
  62. const Point_3 pd(V(d, 0), V(d, 1), V(d, 2));
  63. const Point_3 p1(V(o1, 0), V(o1, 1), V(o1, 2));
  64. const Point_3 p2(V(o2, 0), V(o2, 1), V(o2, 2));
  65. order.resize(2, 1);
  66. switch (CGAL::orientation(ps, pd, p1, p2)) {
  67. case CGAL::POSITIVE:
  68. order(0, 0) = 1;
  69. order(1, 0) = 0;
  70. break;
  71. case CGAL::NEGATIVE:
  72. order(0, 0) = 0;
  73. order(1, 0) = 1;
  74. break;
  75. case CGAL::COPLANAR:
  76. order(0, 0) = adj_faces[0] < adj_faces[1] ? 0:1;
  77. order(1, 0) = adj_faces[0] < adj_faces[1] ? 1:0;
  78. break;
  79. default:
  80. assert(false);
  81. }
  82. return;
  83. }
  84. const size_t num_adj_faces = adj_faces.size();
  85. const size_t o = get_opposite_vertex(
  86. get_face_index(adj_faces[0]));
  87. const Point_3 p_s(V(s, 0), V(s, 1), V(s, 2));
  88. const Point_3 p_d(V(d, 0), V(d, 1), V(d, 2));
  89. const Point_3 p_o(V(o, 0), V(o, 1), V(o, 2));
  90. const Plane_3 separator(p_s, p_d, p_o);
  91. assert(!separator.is_degenerate());
  92. std::vector<Point_3> opposite_vertices;
  93. for (size_t i=0; i<num_adj_faces; i++) {
  94. const size_t o = get_opposite_vertex(
  95. get_face_index(adj_faces[i]));
  96. opposite_vertices.emplace_back(
  97. V(o, 0), V(o, 1), V(o, 2));
  98. }
  99. std::vector<int> positive_side;
  100. std::vector<int> negative_side;
  101. std::vector<int> tie_positive_oriented;
  102. std::vector<int> tie_negative_oriented;
  103. std::vector<size_t> positive_side_index;
  104. std::vector<size_t> negative_side_index;
  105. std::vector<size_t> tie_positive_oriented_index;
  106. std::vector<size_t> tie_negative_oriented_index;
  107. for (size_t i=0; i<num_adj_faces; i++) {
  108. const int f = adj_faces[i];
  109. const Point_3& p_a = opposite_vertices[i];
  110. auto orientation = separator.oriented_side(p_a);
  111. switch (orientation) {
  112. case CGAL::ON_POSITIVE_SIDE:
  113. positive_side.push_back(f);
  114. positive_side_index.push_back(i);
  115. break;
  116. case CGAL::ON_NEGATIVE_SIDE:
  117. negative_side.push_back(f);
  118. negative_side_index.push_back(i);
  119. break;
  120. case CGAL::ON_ORIENTED_BOUNDARY:
  121. {
  122. const Plane_3 other(p_s, p_d, p_a);
  123. const auto target_dir = separator.orthogonal_direction();
  124. const auto query_dir = other.orthogonal_direction();
  125. if (target_dir == query_dir) {
  126. tie_positive_oriented.push_back(f);
  127. tie_positive_oriented_index.push_back(i);
  128. } else if (target_dir == -query_dir) {
  129. tie_negative_oriented.push_back(f);
  130. tie_negative_oriented_index.push_back(i);
  131. } else {
  132. assert(false);
  133. }
  134. }
  135. break;
  136. default:
  137. // Should not be here.
  138. assert(false);
  139. }
  140. }
  141. Eigen::PlainObjectBase<DerivedI> positive_order, negative_order;
  142. order_facets_around_edge(V, F, s, d, positive_side, positive_order);
  143. order_facets_around_edge(V, F, s, d, negative_side, negative_order);
  144. std::vector<size_t> tie_positive_order =
  145. index_sort(tie_positive_oriented);
  146. std::vector<size_t> tie_negative_order =
  147. index_sort(tie_negative_oriented);
  148. // Copy results into order vector.
  149. const size_t tie_positive_size = tie_positive_oriented.size();
  150. const size_t tie_negative_size = tie_negative_oriented.size();
  151. const size_t positive_size = positive_order.size();
  152. const size_t negative_size = negative_order.size();
  153. order.resize(tie_positive_size + positive_size +
  154. tie_negative_size + negative_size, 1);
  155. size_t count=0;
  156. for (size_t i=0; i<tie_positive_size; i++) {
  157. order(count+i, 0) =
  158. tie_positive_oriented_index[tie_positive_order[i]];
  159. }
  160. count += tie_positive_size;
  161. for (size_t i=0; i<negative_size; i++) {
  162. order(count+i, 0) = negative_side_index[negative_order(i, 0)];
  163. }
  164. count += negative_size;
  165. for (size_t i=0; i<tie_negative_size; i++) {
  166. order(count+i, 0) =
  167. tie_negative_oriented_index[tie_negative_order[i]];
  168. }
  169. count += tie_negative_size;
  170. for (size_t i=0; i<positive_size; i++) {
  171. order(count+i, 0) = positive_side_index[positive_order(i, 0)];
  172. }
  173. count += positive_size;
  174. assert(count == num_adj_faces);
  175. // Find the correct start point.
  176. size_t start_idx = 0;
  177. for (size_t i=0; i<num_adj_faces; i++) {
  178. const Point_3& p_a = opposite_vertices[order(i, 0)];
  179. const Point_3& p_b =
  180. opposite_vertices[order((i+1)%num_adj_faces, 0)];
  181. if (CGAL::orientation(p_s, p_d, p_a, p_b) == CGAL::POSITIVE) {
  182. start_idx = (i+1)%num_adj_faces;
  183. break;
  184. }
  185. }
  186. DerivedI circular_order = order;
  187. for (size_t i=0; i<num_adj_faces; i++) {
  188. order(i, 0) = circular_order((start_idx + i)%num_adj_faces, 0);
  189. }
  190. }