123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2014 Alec Jacobson <alecjacobson@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef IGL_SELFINTERSECTMESH_H
- #define IGL_SELFINTERSECTMESH_H
- #include "CGAL_includes.hpp"
- #include "selfintersect.h"
- #include <Eigen/Dense>
- #include <list>
- #include <map>
- #include <vector>
- #ifndef IGL_FIRST_HIT_EXCEPTION
- #define IGL_FIRST_HIT_EXCEPTION 10
- #endif
- // The easiest way to keep track of everything is to use a class
- namespace igl
- {
- // Kernel is a CGAL kernel like:
- // CGAL::Exact_predicates_inexact_constructions_kernel
- // or
- // CGAL::Exact_predicates_exact_constructions_kernel
- template <typename Kernel>
- class SelfIntersectMesh
- {
- public:
- // 3D Primitives
- typedef CGAL::Point_3<Kernel> Point_3;
- typedef CGAL::Segment_3<Kernel> Segment_3;
- typedef CGAL::Triangle_3<Kernel> Triangle_3;
- typedef CGAL::Plane_3<Kernel> Plane_3;
- typedef CGAL::Tetrahedron_3<Kernel> Tetrahedron_3;
- typedef CGAL::Polyhedron_3<Kernel> Polyhedron_3;
- typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron_3;
- // 2D Primitives
- typedef CGAL::Point_2<Kernel> Point_2;
- typedef CGAL::Segment_2<Kernel> Segment_2;
- typedef CGAL::Triangle_2<Kernel> Triangle_2;
- // 2D Constrained Delaunay Triangulation types
- typedef CGAL::Triangulation_vertex_base_2<Kernel> TVB_2;
- typedef CGAL::Constrained_triangulation_face_base_2<Kernel> CTFB_2;
- typedef CGAL::Triangulation_data_structure_2<TVB_2,CTFB_2> TDS_2;
- typedef CGAL::Exact_intersections_tag Itag;
- typedef CGAL::Constrained_Delaunay_triangulation_2<Kernel,TDS_2,Itag>
- CDT_2;
- typedef CGAL::Constrained_triangulation_plus_2<CDT_2> CDT_plus_2;
- // Axis-align boxes for all-pairs self-intersection detection
- typedef std::vector<Triangle_3> Triangles;
- typedef typename Triangles::iterator TrianglesIterator;
- typedef typename Triangles::const_iterator TrianglesConstIterator;
- typedef
- CGAL::Box_intersection_d::Box_with_handle_d<double,3,TrianglesIterator>
- Box;
- // Input mesh
- const Eigen::MatrixXd & V;
- const Eigen::MatrixXi & F;
- // Number of self-intersecting triangle pairs
- int count;
- std::vector<std::list<CGAL::Object> > F_objects;
- Triangles T;
- std::list<int> lIF;
- std::vector<bool> offensive;
- std::vector<int> offending_index;
- std::vector<int> offending;
- // Make a short name for the edge map's key
- typedef std::pair<int,int> EMK;
- // Make a short name for the type stored at each edge, the edge map's
- // value
- typedef std::list<int> EMV;
- // Make a short name for the edge map
- typedef std::map<EMK,EMV> EdgeMap;
- EdgeMap edge2faces;
- public:
- SelfintersectParam params;
- public:
- // Constructs (VV,FF) a new mesh with self-intersections of (V,F)
- // subdivided
- //
- // See also: selfintersect.h
- inline SelfIntersectMesh(
- const Eigen::MatrixXd & V,
- const Eigen::MatrixXi & F,
- const SelfintersectParam & params,
- Eigen::MatrixXd & VV,
- Eigen::MatrixXi & FF,
- Eigen::MatrixXi & IF,
- Eigen::VectorXi & J,
- Eigen::VectorXi & IM
- );
- private:
- // Helper function to mark a face as offensive
- //
- // Inputs:
- // f index of face in F
- inline void mark_offensive(const int f);
- // Helper function to count intersections between faces
- //
- // Input:
- // fa index of face A in F
- // fb index of face B in F
- inline void count_intersection(const int fa,const int fb);
- // Helper function for box_intersect. Intersect two triangles A and B,
- // append the intersection object (point,segment,triangle) to a running
- // list for A and B
- //
- // Inputs:
- // A triangle in 3D
- // B triangle in 3D
- // fa index of A in F (and F_objects)
- // fb index of A in F (and F_objects)
- // Returns true only if A intersects B
- //
- inline bool intersect(
- const Triangle_3 & A,
- const Triangle_3 & B,
- const int fa,
- const int fb);
- // Helper function for box_intersect. In the case where A and B have
- // already been identified to share a vertex, then we only want to add
- // possible segment intersections. Assumes truly duplicate triangles are
- // not given as input
- //
- // Inputs:
- // A triangle in 3D
- // B triangle in 3D
- // fa index of A in F (and F_objects)
- // fb index of B in F (and F_objects)
- // va index of shared vertex in A (and F_objects)
- // vb index of shared vertex in B (and F_objects)
- //// Returns object of intersection (should be Segment or point)
- // Returns true if intersection (besides shared point)
- //
- inline bool single_shared_vertex(
- const Triangle_3 & A,
- const Triangle_3 & B,
- const int fa,
- const int fb,
- const int va,
- const int vb);
- // Helper handling one direction
- inline bool single_shared_vertex(
- const Triangle_3 & A,
- const Triangle_3 & B,
- const int fa,
- const int fb,
- const int va);
- // Helper function for box_intersect. In the case where A and B have
- // already been identified to share two vertices, then we only want to add
- // a possible coplanar (Triangle) intersection. Assumes truly degenerate
- // facets are not givine as input.
- inline bool double_shared_vertex(
- const Triangle_3 & A,
- const Triangle_3 & B,
- const int fa,
- const int fb);
- public:
- // Callback function called during box self intersections test. Means
- // boxes a and b intersect. This method then checks if the triangles in
- // each box intersect and if so, then processes the intersections
- //
- // Inputs:
- // a box containing a triangle
- // b box containing a triangle
- inline void box_intersect(const Box& a, const Box& b);
- private:
- // Compute 2D delaunay triangulation of a given 3d triangle and a list of
- // intersection objects (points,segments,triangles). CGAL uses an affine
- // projection rather than an isometric projection, so we're not
- // guaranteed that the 2D delaunay triangulation here will be a delaunay
- // triangulation in 3D.
- //
- // Inputs:
- // A triangle in 3D
- // A_objects_3 updated list of intersection objects for A
- // Outputs:
- // cdt Contrained delaunay triangulation in projected 2D plane
- inline void projected_delaunay(
- const Triangle_3 & A,
- const std::list<CGAL::Object> & A_objects_3,
- CDT_plus_2 & cdt);
- // Getters:
- public:
- //const std::list<int>& get_lIF() const{ return lIF;}
- static inline void box_intersect(
- SelfIntersectMesh * SIM,
- const SelfIntersectMesh::Box &a,
- const SelfIntersectMesh::Box &b);
- };
- }
- // Implementation
- #include "mesh_to_cgal_triangle_list.h"
- #include <igl/REDRUM.h>
- #include <igl/C_STR.h>
- #include <boost/function.hpp>
- #include <boost/bind.hpp>
- #include <algorithm>
- #include <exception>
- #include <cassert>
- #include <iostream>
- // References:
- // http://minregret.googlecode.com/svn/trunk/skyline/src/extern/CGAL-3.3.1/examples/Polyhedron/polyhedron_self_intersection.cpp
- // http://www.cgal.org/Manual/3.9/examples/Boolean_set_operations_2/do_intersect.cpp
- // Q: Should we be using CGAL::Polyhedron_3?
- // A: No! Input is just a list of unoriented triangles. Polyhedron_3 requires
- // a 2-manifold.
- // A: But! It seems we could use CGAL::Triangulation_3. Though it won't be easy
- // to take advantage of functions like insert_in_facet because we want to
- // constrain segments. Hmmm. Actualy Triangulation_3 doesn't look right...
- //static void box_intersect(SelfIntersectMesh * SIM,const Box & A, const Box & B)
- //{
- // return SIM->box_intersect(A,B);
- //}
- // CGAL's box_self_intersection_d uses C-style function callbacks without
- // userdata. This is a leapfrog method for calling a member function. It should
- // be bound as if the prototype was:
- // static void box_intersect(const Box &a, const Box &b)
- // using boost:
- // boost::function<void(const Box &a,const Box &b)> cb
- // = boost::bind(&::box_intersect, this, _1,_2);
- //
- template <typename Kernel>
- inline void igl::SelfIntersectMesh<Kernel>::box_intersect(
- igl::SelfIntersectMesh<Kernel> * SIM,
- const typename igl::SelfIntersectMesh<Kernel>::Box &a,
- const typename igl::SelfIntersectMesh<Kernel>::Box &b)
- {
- SIM->box_intersect(a,b);
- }
- template <typename Kernel>
- inline igl::SelfIntersectMesh<Kernel>::SelfIntersectMesh(
- const Eigen::MatrixXd & V,
- const Eigen::MatrixXi & F,
- const SelfintersectParam & params,
- Eigen::MatrixXd & VV,
- Eigen::MatrixXi & FF,
- Eigen::MatrixXi & IF,
- Eigen::VectorXi & J,
- Eigen::VectorXi & IM):
- V(V),
- F(F),
- count(0),
- F_objects(F.rows()),
- T(),
- lIF(),
- offensive(F.rows(),false),
- offending_index(F.rows(),-1),
- offending(),
- edge2faces(),
- params(params)
- {
- using namespace std;
- using namespace Eigen;
- // Compute and process self intersections
- mesh_to_cgal_triangle_list(V,F,T);
- // http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Box_intersection_d/Chapter_main.html#Section_63.5
- // Create the corresponding vector of bounding boxes
- std::vector<Box> boxes;
- boxes.reserve(T.size());
- for (
- TrianglesIterator tit = T.begin();
- tit != T.end();
- ++tit)
- {
- boxes.push_back(Box(tit->bbox(), tit));
- }
- // Leapfrog callback
- boost::function<void(const Box &a,const Box &b)> cb
- = boost::bind(&box_intersect, this, _1,_2);
- // Run the self intersection algorithm with all defaults
- try{
- CGAL::box_self_intersection_d(boxes.begin(), boxes.end(),cb);
- }catch(int e)
- {
- // Rethrow if not IGL_FIRST_HIT_EXCEPTION
- if(e != IGL_FIRST_HIT_EXCEPTION)
- {
- throw e;
- }
- // Otherwise just fall through
- }
- // Convert lIF to Eigen matrix
- assert(lIF.size()%2 == 0);
- IF.resize(lIF.size()/2,2);
- {
- int i=0;
- for(
- typename list<int>::const_iterator ifit = lIF.begin();
- ifit!=lIF.end();
- )
- {
- IF(i,0) = (*ifit);
- ifit++;
- IF(i,1) = (*ifit);
- ifit++;
- i++;
- }
- }
- if(params.detect_only)
- {
- return;
- }
- int NF_count = 0;
- // list of new faces, we'll fix F later
- vector<MatrixXi> NF(offending.size());
- // list of new vertices
- list<Point_3> NV;
- int NV_count = 0;
- vector<CDT_plus_2> cdt(offending.size());
- vector<Plane_3> P(offending.size());
- // Use map for *all* faces
- map<typename CDT_plus_2::Vertex_handle,int> v2i;
- // Loop over offending triangles
- for(int o = 0;o<(int)offending.size();o++)
- {
- // index in F
- const int f = offending[o];
- projected_delaunay(T[f],F_objects[f],cdt[o]);
- // Q: Is this also delaunay in 3D?
- // A: No, because the projection is affine and delaunay is not affine
- // invariant.
- // Q: Then, can't we first get the 2D delaunay triangulation, then lift it
- // to 3D and flip any offending edges?
- // Plane of projection (also used by projected_delaunay)
- P[o] = Plane_3(T[f].vertex(0),T[f].vertex(1),T[f].vertex(2));
- // Build index map
- {
- int i=0;
- for(
- typename CDT_plus_2::Finite_vertices_iterator vit = cdt[o].finite_vertices_begin();
- vit != cdt[o].finite_vertices_end();
- ++vit)
- {
- if(i<3)
- {
- //cout<<T[f].vertex(i)<<
- // (T[f].vertex(i) == P[o].to_3d(vit->point())?" == ":" != ")<<
- // P[o].to_3d(vit->point())<<endl;
- #ifndef NDEBUG
- // I want to be sure that the original corners really show up as the
- // original corners of the CDT. I.e. I don't trust CGAL to maintain
- // the order
- assert(T[f].vertex(i) == P[o].to_3d(vit->point()));
- #endif
- // For first three, use original index in F
- v2i[vit] = F(f,i);
- }else
- {
- const Point_3 vit_point_3 = P[o].to_3d(vit->point());
- // First look up each edge's neighbors to see if exact point has
- // already been added (This makes everything a bit quadratic)
- bool found = false;
- for(int e = 0; e<3 && !found;e++)
- {
- // Index of F's eth edge in V
- int i = F(f,(e+1)%3);
- int j = F(f,(e+2)%3);
- // Be sure that i<j
- if(i>j)
- {
- swap(i,j);
- }
- assert(edge2faces.count(EMK(i,j))==1);
- // loop over neighbors
- for(
- list<int>::const_iterator nit = edge2faces[EMK(i,j)].begin();
- nit != edge2faces[EMK(i,j)].end() && !found;
- nit++)
- {
- // don't consider self
- if(*nit == f)
- {
- continue;
- }
- // index of neighbor in offending (to find its cdt)
- int no = offending_index[*nit];
- // Loop over vertices of that neighbor's cdt (might not have been
- // processed yet, but then it's OK because it'll just be empty)
- for(
- typename CDT_plus_2::Finite_vertices_iterator uit = cdt[no].finite_vertices_begin();
- uit != cdt[no].finite_vertices_end() && !found;
- ++uit)
- {
- if(vit_point_3 == P[no].to_3d(uit->point()))
- {
- assert(v2i.count(uit) == 1);
- v2i[vit] = v2i[uit];
- found = true;
- }
- }
- }
- }
- if(!found)
- {
- v2i[vit] = V.rows()+NV_count;
- NV.push_back(vit_point_3);
- NV_count++;
- }
- }
- i++;
- }
- }
- {
- int i = 0;
- // Resize to fit new number of triangles
- NF[o].resize(cdt[o].number_of_faces(),3);
- NF_count+=NF[o].rows();
- // Append new faces to NF
- for(
- typename CDT_plus_2::Finite_faces_iterator fit = cdt[o].finite_faces_begin();
- fit != cdt[o].finite_faces_end();
- ++fit)
- {
- NF[o](i,0) = v2i[fit->vertex(0)];
- NF[o](i,1) = v2i[fit->vertex(1)];
- NF[o](i,2) = v2i[fit->vertex(2)];
- i++;
- }
- }
- }
- assert(NV_count == (int)NV.size());
- // Build output
- #ifndef NDEBUG
- {
- int off_count = 0;
- for(int f = 0;f<F.rows();f++)
- {
- off_count+= (offensive[f]?1:0);
- }
- assert(off_count==(int)offending.size());
- }
- #endif
- // Append faces
- FF.resize(F.rows()-offending.size()+NF_count,3);
- J.resize(FF.rows());
- // First append non-offending original faces
- // There's an Eigen way to do this in one line but I forget
- int off = 0;
- for(int f = 0;f<F.rows();f++)
- {
- if(!offensive[f])
- {
- FF.row(off) = F.row(f);
- J(off) = f;
- off++;
- }
- }
- assert(off == (int)(F.rows()-offending.size()));
- // Now append replacement faces for offending faces
- for(int o = 0;o<(int)offending.size();o++)
- {
- FF.block(off,0,NF[o].rows(),3) = NF[o];
- J.block(off,0,NF[o].rows(),1).setConstant(offending[o]);
- off += NF[o].rows();
- }
- // Append vertices
- VV.resize(V.rows()+NV_count,3);
- VV.block(0,0,V.rows(),3) = V;
- {
- int i = 0;
- for(
- typename list<Point_3>::const_iterator nvit = NV.begin();
- nvit != NV.end();
- nvit++)
- {
- for(int d = 0;d<3;d++)
- {
- const Point_3 & p = *nvit;
- VV(V.rows()+i,d) = CGAL::to_double(p[d]);
- // This distinction does not seem necessary:
- //#ifdef INEXACT_CONSTRUCTION
- // VV(V.rows()+i,d) = CGAL::to_double(p[d]);
- //#else
- // VV(V.rows()+i,d) = CGAL::to_double(p[d].exact());
- //#endif
- }
- i++;
- }
- }
- IM.resize(VV.rows(),1);
- map<Point_3,int> vv2i;
- // Safe to check for duplicates using double for original vertices: if
- // incoming reps are different then the points are unique.
- for(int v = 0;v<V.rows();v++)
- {
- const Point_3 p(V(v,0),V(v,1),V(v,2));
- if(vv2i.count(p)==0)
- {
- vv2i[p] = v;
- }
- assert(vv2i.count(p) == 1);
- IM(v) = vv2i[p];
- }
- // Must check for duplicates of new vertices using exact.
- {
- int v = V.rows();
- for(
- typename list<Point_3>::const_iterator nvit = NV.begin();
- nvit != NV.end();
- nvit++)
- {
- const Point_3 & p = *nvit;
- if(vv2i.count(p)==0)
- {
- vv2i[p] = v;
- }
- assert(vv2i.count(p) == 1);
- IM(v) = vv2i[p];
- v++;
- }
- }
- // Q: Does this give the same result as TETGEN?
- // A: For the cow and beast, yes.
- // Q: Is tetgen faster than this CGAL implementation?
- // A: Well, yes. But Tetgen is only solving the detection (predicates)
- // problem. This is also appending the intersection objects (construction).
- // But maybe tetgen is still faster for the detection part. For example, this
- // CGAL implementation on the beast takes 98 seconds but tetgen detection
- // takes 14 seconds
- }
- template <typename Kernel>
- inline void igl::SelfIntersectMesh<Kernel>::mark_offensive(const int f)
- {
- using namespace std;
- lIF.push_back(f);
- if(!offensive[f])
- {
- offensive[f]=true;
- offending_index[f]=offending.size();
- offending.push_back(f);
- // Add to edge map
- for(int e = 0; e<3;e++)
- {
- // Index of F's eth edge in V
- int i = F(f,(e+1)%3);
- int j = F(f,(e+2)%3);
- // Be sure that i<j
- if(i>j)
- {
- swap(i,j);
- }
- // Create new list if there is no entry
- if(edge2faces.count(EMK(i,j))==0)
- {
- edge2faces[EMK(i,j)] = list<int>();
- }
- // append to list
- edge2faces[EMK(i,j)].push_back(f);
- }
- }
- }
- template <typename Kernel>
- inline void igl::SelfIntersectMesh<Kernel>::count_intersection(
- const int fa,
- const int fb)
- {
- mark_offensive(fa);
- mark_offensive(fb);
- this->count++;
- // We found the first intersection
- if(params.first_only && this->count >= 1)
- {
- throw IGL_FIRST_HIT_EXCEPTION;
- }
- }
- template <typename Kernel>
- inline bool igl::SelfIntersectMesh<Kernel>::intersect(
- const Triangle_3 & A,
- const Triangle_3 & B,
- const int fa,
- const int fb)
- {
- // Determine whether there is an intersection
- if(!CGAL::do_intersect(A,B))
- {
- return false;
- }
- if(!params.detect_only)
- {
- // Construct intersection
- CGAL::Object result = CGAL::intersection(A,B);
- F_objects[fa].push_back(result);
- F_objects[fb].push_back(result);
- }
- count_intersection(fa,fb);
- return true;
- }
- template <typename Kernel>
- inline bool igl::SelfIntersectMesh<Kernel>::single_shared_vertex(
- const Triangle_3 & A,
- const Triangle_3 & B,
- const int fa,
- const int fb,
- const int va,
- const int vb)
- {
- ////using namespace std;
- //CGAL::Object result = CGAL::intersection(A,B);
- //if(CGAL::object_cast<Segment_3 >(&result))
- //{
- // // Append to each triangle's running list
- // F_objects[fa].push_back(result);
- // F_objects[fb].push_back(result);
- // count_intersection(fa,fb);
- //}else
- //{
- // // Then intersection must be at point
- // // And point must be at shared vertex
- // assert(CGAL::object_cast<Point_3>(&result));
- //}
- if(single_shared_vertex(A,B,fa,fb,va))
- {
- return true;
- }
- return single_shared_vertex(B,A,fb,fa,vb);
- }
- template <typename Kernel>
- inline bool igl::SelfIntersectMesh<Kernel>::single_shared_vertex(
- const Triangle_3 & A,
- const Triangle_3 & B,
- const int fa,
- const int fb,
- const int va)
- {
- // This was not a good idea. It will not handle coplanar triangles well.
- using namespace std;
- Segment_3 sa(
- A.vertex((va+1)%3),
- A.vertex((va+2)%3));
- if(CGAL::do_intersect(sa,B))
- {
- CGAL::Object result = CGAL::intersection(sa,B);
- if(const Point_3 * p = CGAL::object_cast<Point_3 >(&result))
- {
- if(!params.detect_only)
- {
- // Single intersection --> segment from shared point to intersection
- CGAL::Object seg = CGAL::make_object(Segment_3(
- A.vertex(va),
- *p));
- F_objects[fa].push_back(seg);
- F_objects[fb].push_back(seg);
- }
- count_intersection(fa,fb);
- return true;
- }else if(CGAL::object_cast<Segment_3 >(&result))
- {
- //cerr<<REDRUM("Coplanar at: "<<fa<<" & "<<fb<<" (single shared).")<<endl;
- // Must be coplanar
- if(params.detect_only)
- {
- count_intersection(fa,fb);
- }else
- {
- // WRONG:
- //// Segment intersection --> triangle from shared point to intersection
- //CGAL::Object tri = CGAL::make_object(Triangle_3(
- // A.vertex(va),
- // s->vertex(0),
- // s->vertex(1)));
- //F_objects[fa].push_back(tri);
- //F_objects[fb].push_back(tri);
- //count_intersection(fa,fb);
- // Need to do full test. Intersection could be a general poly.
- bool test = intersect(A,B,fa,fb);
- ((void)test);
- assert(test);
- }
- return true;
- }else
- {
- cerr<<REDRUM("Segment ∩ triangle neither point nor segment?")<<endl;
- assert(false);
- }
- }
- return false;
- }
- template <typename Kernel>
- inline bool igl::SelfIntersectMesh<Kernel>::double_shared_vertex(
- const Triangle_3 & A,
- const Triangle_3 & B,
- const int fa,
- const int fb)
- {
- using namespace std;
- // Cheaper way to do this than calling do_intersect?
- if(
- // Can only have an intersection if co-planar
- (A.supporting_plane() == B.supporting_plane() ||
- A.supporting_plane() == B.supporting_plane().opposite()) &&
- CGAL::do_intersect(A,B))
- {
- // Construct intersection
- try
- {
- CGAL::Object result = CGAL::intersection(A,B);
- if(result)
- {
- if(CGAL::object_cast<Segment_3 >(&result))
- {
- // not coplanar
- return false;
- } else if(CGAL::object_cast<Point_3 >(&result))
- {
- // this "shouldn't" happen but does for inexact
- return false;
- } else
- {
- if(!params.detect_only)
- {
- // Triangle object
- F_objects[fa].push_back(result);
- F_objects[fb].push_back(result);
- }
- count_intersection(fa,fb);
- //cerr<<REDRUM("Coplanar at: "<<fa<<" & "<<fb<<" (double shared).")<<endl;
- return true;
- }
- }else
- {
- // CGAL::intersection is disagreeing with do_intersect
- return false;
- }
- }catch(...)
- {
- // This catches some cgal assertion:
- // CGAL error: assertion violation!
- // Expression : is_finite(d)
- // File : /opt/local/include/CGAL/GMP/Gmpq_type.h
- // Line : 132
- // Explanation:
- // But only if NDEBUG is not defined, otherwise there's an uncaught
- // "Floating point exception: 8" SIGFPE
- return false;
- }
- }
- // Shouldn't get here either
- assert(false);
- return false;
- }
- template <typename Kernel>
- inline void igl::SelfIntersectMesh<Kernel>::box_intersect(
- const Box& a,
- const Box& b)
- {
- using namespace std;
- // index in F and T
- int fa = a.handle()-T.begin();
- int fb = b.handle()-T.begin();
- const Triangle_3 & A = *a.handle();
- const Triangle_3 & B = *b.handle();
- // I'm not going to deal with degenerate triangles, though at some point we
- // should
- assert(!a.handle()->is_degenerate());
- assert(!b.handle()->is_degenerate());
- // Number of combinatorially shared vertices
- int comb_shared_vertices = 0;
- // Number of geometrically shared vertices (*not* including combinatorially
- // shared)
- int geo_shared_vertices = 0;
- // Keep track of shared vertex indices (we only handles single shared
- // vertices as a special case, so just need last/first/only ones)
- int va=-1,vb=-1;
- int ea,eb;
- for(ea=0;ea<3;ea++)
- {
- for(eb=0;eb<3;eb++)
- {
- if(F(fa,ea) == F(fb,eb))
- {
- comb_shared_vertices++;
- va = ea;
- vb = eb;
- }else if(A.vertex(ea) == B.vertex(eb))
- {
- geo_shared_vertices++;
- va = ea;
- vb = eb;
- }
- }
- }
- const int total_shared_vertices = comb_shared_vertices + geo_shared_vertices;
- if(comb_shared_vertices== 3)
- {
- // Combinatorially duplicate face, these should be removed by preprocessing
- cerr<<REDRUM("Facets "<<fa<<" and "<<fb<<" are combinatorial duplicates")<<endl;
- goto done;
- }
- if(total_shared_vertices== 3)
- {
- // Geometrically duplicate face, these should be removed by preprocessing
- cerr<<REDRUM("Facets "<<fa<<" and "<<fb<<" are geometrical duplicates")<<endl;
- goto done;
- }
- //// SPECIAL CASES ARE BROKEN FOR COPLANAR TRIANGLES
- //if(total_shared_vertices > 0)
- //{
- // bool coplanar =
- // CGAL::coplanar(A.vertex(0),A.vertex(1),A.vertex(2),B.vertex(0)) &&
- // CGAL::coplanar(A.vertex(0),A.vertex(1),A.vertex(2),B.vertex(1)) &&
- // CGAL::coplanar(A.vertex(0),A.vertex(1),A.vertex(2),B.vertex(2));
- // if(coplanar)
- // {
- // cerr<<MAGENTAGIN("Facets "<<fa<<" and "<<fb<<
- // " are coplanar and share vertices")<<endl;
- // goto full;
- // }
- //}
- if(total_shared_vertices == 2)
- {
- // Q: What about coplanar?
- //
- // o o
- // |\ /|
- // | \/ |
- // | /\ |
- // |/ \|
- // o----o
- double_shared_vertex(A,B,fa,fb);
- goto done;
- }
- assert(total_shared_vertices<=1);
- if(total_shared_vertices==1)
- {
- assert(va>=0 && va<3);
- assert(vb>=0 && vb<3);
- //#ifndef NDEBUG
- // CGAL::Object result =
- //#endif
- single_shared_vertex(A,B,fa,fb,va,vb);
- //#ifndef NDEBUG
- // if(!CGAL::object_cast<Segment_3 >(&result))
- // {
- // const Point_3 * p = CGAL::object_cast<Point_3 >(&result);
- // assert(p);
- // for(int ea=0;ea<3;ea++)
- // {
- // for(int eb=0;eb<3;eb++)
- // {
- // if(F(fa,ea) == F(fb,eb))
- // {
- // assert(*p==A.vertex(ea));
- // assert(*p==B.vertex(eb));
- // }
- // }
- // }
- // }
- //#endif
- }else
- {
- //full:
- // No geometrically shared vertices, do general intersect
- intersect(*a.handle(),*b.handle(),fa,fb);
- }
- done:
- return;
- }
- // Compute 2D delaunay triangulation of a given 3d triangle and a list of
- // intersection objects (points,segments,triangles). CGAL uses an affine
- // projection rather than an isometric projection, so we're not guaranteed
- // that the 2D delaunay triangulation here will be a delaunay triangulation
- // in 3D.
- //
- // Inputs:
- // A triangle in 3D
- // A_objects_3 updated list of intersection objects for A
- // Outputs:
- // cdt Contrained delaunay triangulation in projected 2D plane
- template <typename Kernel>
- inline void igl::SelfIntersectMesh<Kernel>::projected_delaunay(
- const Triangle_3 & A,
- const std::list<CGAL::Object> & A_objects_3,
- CDT_plus_2 & cdt)
- {
- using namespace std;
- // http://www.cgal.org/Manual/3.2/doc_html/cgal_manual/Triangulation_2/Chapter_main.html#Section_2D_Triangulations_Constrained_Plus
- // Plane of triangle A
- Plane_3 P(A.vertex(0),A.vertex(1),A.vertex(2));
- // Insert triangle into vertices
- typename CDT_plus_2::Vertex_handle corners[3];
- for(int i = 0;i<3;i++)
- {
- corners[i] = cdt.insert(P.to_2d(A.vertex(i)));
- }
- // Insert triangle edges as constraints
- for(int i = 0;i<3;i++)
- {
- cdt.insert_constraint( corners[(i+1)%3], corners[(i+2)%3]);
- }
- // Insert constraints for intersection objects
- for(
- typename list<CGAL::Object>::const_iterator lit = A_objects_3.begin();
- lit != A_objects_3.end();
- lit++)
- {
- CGAL::Object obj = *lit;
- if(const Point_3 *ipoint = CGAL::object_cast<Point_3 >(&obj))
- {
- // Add point
- cdt.insert(P.to_2d(*ipoint));
- } else if(const Segment_3 *iseg = CGAL::object_cast<Segment_3 >(&obj))
- {
- // Add segment constraint
- cdt.insert_constraint(P.to_2d(iseg->vertex(0)),P.to_2d(iseg->vertex(1)));
- } else if(const Triangle_3 *itri = CGAL::object_cast<Triangle_3 >(&obj))
- {
- // Add 3 segment constraints
- cdt.insert_constraint(P.to_2d(itri->vertex(0)),P.to_2d(itri->vertex(1)));
- cdt.insert_constraint(P.to_2d(itri->vertex(1)),P.to_2d(itri->vertex(2)));
- cdt.insert_constraint(P.to_2d(itri->vertex(2)),P.to_2d(itri->vertex(0)));
- } else if(const std::vector<Point_3 > *polyp =
- CGAL::object_cast< std::vector<Point_3 > >(&obj))
- {
- //cerr<<REDRUM("Poly...")<<endl;
- const std::vector<Point_3 > & poly = *polyp;
- const int m = poly.size();
- assert(m>=2);
- for(int p = 0;p<m;p++)
- {
- const int np = (p+1)%m;
- cdt.insert_constraint(P.to_2d(poly[p]),P.to_2d(poly[np]));
- }
- }else
- {
- cerr<<REDRUM("What is this object?!")<<endl;
- assert(false);
- }
- }
- }
- #endif
|