min_quad_dense.cpp 2.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384
  1. #include "min_quad_dense.h"
  2. #include <Eigen/Core>
  3. #include <Eigen/LU>
  4. #include "EPS.h"
  5. template <typename T>
  6. IGL_INLINE void igl::min_quad_dense_precompute(
  7. const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& A,
  8. const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& Aeq,
  9. Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& S)
  10. {
  11. typedef Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> Mat;
  12. // This threshold seems to matter a lot but I'm not sure how to
  13. // set it
  14. const T treshold = igl::FLOAT_EPS;
  15. //const T treshold = igl::DOUBLE_EPS;
  16. const int n = A.rows();
  17. assert(A.cols() == n);
  18. const int m = Aeq.rows();
  19. assert(Aeq.cols() == n);
  20. // Lagrange multipliers method:
  21. Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> LM(n + m, n + m);
  22. LM.block(0, 0, n, n) = A;
  23. LM.block(0, n, n, m) = Aeq.transpose();
  24. LM.block(n, 0, m, n) = Aeq;
  25. LM.block(n, n, m, m).setZero();
  26. //#define USE_LU_DECOMPOSITION
  27. #ifdef USE_LU_DECOMPOSITION
  28. // if LM is close to singular, use at your own risk :)
  29. Mat LMpinv = LM.inverse();
  30. #else // use SVD
  31. typedef Eigen::Matrix<T, Eigen::Dynamic, 1> Vec;
  32. Vec singValues;
  33. Eigen::JacobiSVD<Mat> svd;
  34. svd.compute(LM, Eigen::ComputeFullU | Eigen::ComputeFullV );
  35. const Mat& u = svd.matrixU();
  36. const Mat& v = svd.matrixV();
  37. const Vec& singVals = svd.singularValues();
  38. Vec pi_singVals(n + m);
  39. int zeroed = 0;
  40. for (int i=0; i<n + m; i++)
  41. {
  42. T sv = singVals(i, 0);
  43. assert(sv >= 0);
  44. // printf("sv: %lg ? %lg\n",(double) sv,(double)treshold);
  45. if (sv > treshold) pi_singVals(i, 0) = T(1) / sv;
  46. else
  47. {
  48. pi_singVals(i, 0) = T(0);
  49. zeroed++;
  50. }
  51. }
  52. printf("min_quad_dense_precompute: %i singular values zeroed (threshold = %e)\n", zeroed, treshold);
  53. Eigen::DiagonalMatrix<T, Eigen::Dynamic> pi_diag(pi_singVals);
  54. Mat LMpinv = v * pi_diag * u.transpose();
  55. #endif
  56. S = LMpinv.block(0, 0, n, n + m);
  57. //// debug:
  58. //mlinit(&g_pEngine);
  59. //
  60. //mlsetmatrix(&g_pEngine, "A", A);
  61. //mlsetmatrix(&g_pEngine, "Aeq", Aeq);
  62. //mlsetmatrix(&g_pEngine, "LM", LM);
  63. //mlsetmatrix(&g_pEngine, "u", u);
  64. //mlsetmatrix(&g_pEngine, "v", v);
  65. //MatrixXd svMat = singVals;
  66. //mlsetmatrix(&g_pEngine, "singVals", svMat);
  67. //mlsetmatrix(&g_pEngine, "LMpinv", LMpinv);
  68. //mlsetmatrix(&g_pEngine, "S", S);
  69. //int hu = 1;
  70. }
  71. #ifndef IGL_HEADER_ONLY
  72. // Explicit template specialization
  73. #endif