min_quad_dense.h 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112
  1. #ifndef IGL_MIN_QUAD_DENSE_H
  2. #define IGL_MIN_QUAD_DENSE_H
  3. #include <Eigen/Core>
  4. #include <Eigen/Dense>
  5. #include <Eigen/LU>
  6. //// debug
  7. //#include <matlabinterface.h>
  8. //Engine *g_pEngine;
  9. #include <EPS.h>
  10. namespace igl
  11. {
  12. // MIN_QUAD_WITH_FIXED Minimize quadratic energy Z'*A*Z + Z'*B + C
  13. // subject to linear constraints Aeq*Z = Beq
  14. //
  15. // Templates:
  16. // T should be a eigen matrix primitive type like float or double
  17. // Inputs:
  18. // A n by n matrix of quadratic coefficients
  19. // B n by 1 column of linear coefficients
  20. // Aeq m by n list of linear equality constraint coefficients
  21. // Beq m by 1 list of linear equality constraint constant values
  22. // Outputs:
  23. // S n by (n + m) "solve" matrix, such that S*[B', Beq'] is a solution
  24. // Returns true on success, false on error
  25. template <typename T>
  26. inline void min_quad_dense_precompute(
  27. const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& A,
  28. const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& Aeq,
  29. Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& S);
  30. }
  31. // Implementation
  32. template <typename T>
  33. inline void igl::min_quad_dense_precompute(
  34. const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& A,
  35. const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& Aeq,
  36. Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& S)
  37. {
  38. typedef Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> Mat;
  39. // This threshold seems to matter a lot but I'm not sure how to
  40. // set it
  41. const T treshold = igl::FLOAT_EPS;
  42. //const T treshold = igl::DOUBLE_EPS;
  43. const int n = A.rows();
  44. assert(A.cols() == n);
  45. const int m = Aeq.rows();
  46. assert(Aeq.cols() == n);
  47. // Lagrange multipliers method:
  48. Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> LM(n + m, n + m);
  49. LM.block(0, 0, n, n) = A;
  50. LM.block(0, n, n, m) = Aeq.transpose();
  51. LM.block(n, 0, m, n) = Aeq;
  52. LM.block(n, n, m, m).setZero();
  53. //#define USE_LU_DECOMPOSITION
  54. #ifdef USE_LU_DECOMPOSITION
  55. // if LM is close to singular, use at your own risk :)
  56. Mat LMpinv = LM.inverse();
  57. #else // use SVD
  58. typedef Eigen::Matrix<T, Eigen::Dynamic, 1> Vec;
  59. Vec singValues;
  60. Eigen::JacobiSVD<Mat> svd;
  61. svd.compute(LM, Eigen::ComputeFullU | Eigen::ComputeFullV );
  62. const Mat& u = svd.matrixU();
  63. const Mat& v = svd.matrixV();
  64. const Vec& singVals = svd.singularValues();
  65. Vec pi_singVals(n + m);
  66. int zeroed = 0;
  67. for (int i=0; i<n + m; i++)
  68. {
  69. T sv = singVals(i, 0);
  70. assert(sv >= 0);
  71. // printf("sv: %lg ? %lg\n",(double) sv,(double)treshold);
  72. if (sv > treshold) pi_singVals(i, 0) = T(1) / sv;
  73. else
  74. {
  75. pi_singVals(i, 0) = T(0);
  76. zeroed++;
  77. }
  78. }
  79. printf("min_quad_dense_precompute: %i singular values zeroed (threshold = %e)\n", zeroed, treshold);
  80. Eigen::DiagonalMatrix<T, Eigen::Dynamic> pi_diag(pi_singVals);
  81. Mat LMpinv = v * pi_diag * u.transpose();
  82. #endif
  83. S = LMpinv.block(0, 0, n, n + m);
  84. //// debug:
  85. //mlinit(&g_pEngine);
  86. //
  87. //mlsetmatrix(&g_pEngine, "A", A);
  88. //mlsetmatrix(&g_pEngine, "Aeq", Aeq);
  89. //mlsetmatrix(&g_pEngine, "LM", LM);
  90. //mlsetmatrix(&g_pEngine, "u", u);
  91. //mlsetmatrix(&g_pEngine, "v", v);
  92. //MatrixXd svMat = singVals;
  93. //mlsetmatrix(&g_pEngine, "singVals", svMat);
  94. //mlsetmatrix(&g_pEngine, "LMpinv", LMpinv);
  95. //mlsetmatrix(&g_pEngine, "S", S);
  96. //int hu = 1;
  97. }
  98. #endif