massmatrix.cpp 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. // This file is part of libigl, a simple c++ geometry processing library.
  2. //
  3. // Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
  4. //
  5. // This Source Code Form is subject to the terms of the Mozilla Public License
  6. // v. 2.0. If a copy of the MPL was not distributed with this file, You can
  7. // obtain one at http://mozilla.org/MPL/2.0/.
  8. #include "massmatrix.h"
  9. #include "normalize_row_sums.h"
  10. #include "sparse.h"
  11. #include "repmat.h"
  12. #include <Eigen/Geometry>
  13. #include <iostream>
  14. template <typename DerivedV, typename DerivedF, typename Scalar>
  15. IGL_INLINE void igl::massmatrix(
  16. const Eigen::MatrixBase<DerivedV> & V,
  17. const Eigen::MatrixBase<DerivedF> & F,
  18. const MassMatrixType type,
  19. Eigen::SparseMatrix<Scalar>& M)
  20. {
  21. using namespace Eigen;
  22. using namespace std;
  23. assert(type!=MASSMATRIX_FULL);
  24. const int n = V.rows();
  25. const int m = F.rows();
  26. const int simplex_size = F.cols();
  27. Matrix<int,Dynamic,1> MI;
  28. Matrix<int,Dynamic,1> MJ;
  29. Matrix<Scalar,Dynamic,1> MV;
  30. if(simplex_size == 3)
  31. {
  32. // Triangles
  33. // edge lengths numbered same as opposite vertices
  34. Matrix<Scalar,Dynamic,3> l(m,3);
  35. // loop over faces
  36. for(int i = 0;i<m;i++)
  37. {
  38. l(i,0) = sqrt((V.row(F(i,1))-V.row(F(i,2))).array().pow(2).sum());
  39. l(i,1) = sqrt((V.row(F(i,2))-V.row(F(i,0))).array().pow(2).sum());
  40. l(i,2) = sqrt((V.row(F(i,0))-V.row(F(i,1))).array().pow(2).sum());
  41. }
  42. // semiperimeters
  43. Matrix<Scalar,Dynamic,1> s = l.rowwise().sum()*0.5;
  44. assert(s.rows() == m);
  45. // Heron's forumal for area
  46. Matrix<Scalar,Dynamic,1> dblA(m);
  47. for(int i = 0;i<m;i++)
  48. {
  49. dblA(i) = 2.0*sqrt(s(i)*(s(i)-l(i,0))*(s(i)-l(i,1))*(s(i)-l(i,2)));
  50. }
  51. switch(type)
  52. {
  53. case MASSMATRIX_BARYCENTRIC:
  54. // diagonal entries for each face corner
  55. MI.resize(m*3,1); MJ.resize(m*3,1); MV.resize(m*3,1);
  56. MI.block(0*m,0,m,1) = F.col(0);
  57. MI.block(1*m,0,m,1) = F.col(1);
  58. MI.block(2*m,0,m,1) = F.col(2);
  59. MJ = MI;
  60. repmat(dblA,3,1,MV);
  61. MV.array() /= 6.0;
  62. break;
  63. case MASSMATRIX_VORONOI:
  64. {
  65. // diagonal entries for each face corner
  66. // http://www.alecjacobson.com/weblog/?p=874
  67. MI.resize(m*3,1); MJ.resize(m*3,1); MV.resize(m*3,1);
  68. MI.block(0*m,0,m,1) = F.col(0);
  69. MI.block(1*m,0,m,1) = F.col(1);
  70. MI.block(2*m,0,m,1) = F.col(2);
  71. MJ = MI;
  72. // Holy shit this needs to be cleaned up and optimized
  73. Matrix<Scalar,Dynamic,3> cosines(m,3);
  74. cosines.col(0) =
  75. (l.col(2).array().pow(2)+l.col(1).array().pow(2)-l.col(0).array().pow(2))/(l.col(1).array()*l.col(2).array()*2.0);
  76. cosines.col(1) =
  77. (l.col(0).array().pow(2)+l.col(2).array().pow(2)-l.col(1).array().pow(2))/(l.col(2).array()*l.col(0).array()*2.0);
  78. cosines.col(2) =
  79. (l.col(1).array().pow(2)+l.col(0).array().pow(2)-l.col(2).array().pow(2))/(l.col(0).array()*l.col(1).array()*2.0);
  80. Matrix<Scalar,Dynamic,3> barycentric = cosines.array() * l.array();
  81. normalize_row_sums(barycentric,barycentric);
  82. Matrix<Scalar,Dynamic,3> partial = barycentric;
  83. partial.col(0).array() *= dblA.array() * 0.5;
  84. partial.col(1).array() *= dblA.array() * 0.5;
  85. partial.col(2).array() *= dblA.array() * 0.5;
  86. Matrix<Scalar,Dynamic,3> quads(partial.rows(),partial.cols());
  87. quads.col(0) = (partial.col(1)+partial.col(2))*0.5;
  88. quads.col(1) = (partial.col(2)+partial.col(0))*0.5;
  89. quads.col(2) = (partial.col(0)+partial.col(1))*0.5;
  90. quads.col(0) = (cosines.col(0).array()<0).select( 0.25*dblA,quads.col(0));
  91. quads.col(1) = (cosines.col(0).array()<0).select(0.125*dblA,quads.col(1));
  92. quads.col(2) = (cosines.col(0).array()<0).select(0.125*dblA,quads.col(2));
  93. quads.col(0) = (cosines.col(1).array()<0).select(0.125*dblA,quads.col(0));
  94. quads.col(1) = (cosines.col(1).array()<0).select(0.25*dblA,quads.col(1));
  95. quads.col(2) = (cosines.col(1).array()<0).select(0.125*dblA,quads.col(2));
  96. quads.col(0) = (cosines.col(2).array()<0).select(0.125*dblA,quads.col(0));
  97. quads.col(1) = (cosines.col(2).array()<0).select(0.125*dblA,quads.col(1));
  98. quads.col(2) = (cosines.col(2).array()<0).select( 0.25*dblA,quads.col(2));
  99. MV.block(0*m,0,m,1) = quads.col(0);
  100. MV.block(1*m,0,m,1) = quads.col(1);
  101. MV.block(2*m,0,m,1) = quads.col(2);
  102. break;
  103. }
  104. case MASSMATRIX_FULL:
  105. assert(false && "Implementation incomplete");
  106. break;
  107. default:
  108. assert(false && "Unknown Mass matrix type");
  109. }
  110. }else if(simplex_size == 4)
  111. {
  112. assert(V.cols() == 3);
  113. assert(type == MASSMATRIX_BARYCENTRIC);
  114. MI.resize(m*4,1); MJ.resize(m*4,1); MV.resize(m*4,1);
  115. MI.block(0*m,0,m,1) = F.col(0);
  116. MI.block(1*m,0,m,1) = F.col(1);
  117. MI.block(2*m,0,m,1) = F.col(2);
  118. MI.block(3*m,0,m,1) = F.col(3);
  119. MJ = MI;
  120. // loop over tets
  121. for(int i = 0;i<m;i++)
  122. {
  123. // http://en.wikipedia.org/wiki/Tetrahedron#Volume
  124. Matrix<Scalar,3,1> v0m3 = V.row(F(i,0)) - V.row(F(i,3));
  125. Matrix<Scalar,3,1> v1m3 = V.row(F(i,1)) - V.row(F(i,3));
  126. Matrix<Scalar,3,1> v2m3 = V.row(F(i,2)) - V.row(F(i,3));
  127. Scalar v = fabs(v0m3.dot(v1m3.cross(v2m3)))/6.0;
  128. MV(i+0*m) = v/4.0;
  129. MV(i+1*m) = v/4.0;
  130. MV(i+2*m) = v/4.0;
  131. MV(i+3*m) = v/4.0;
  132. }
  133. }else
  134. {
  135. // Unsupported simplex size
  136. assert(false && "Unsupported simplex size");
  137. }
  138. sparse(MI,MJ,MV,n,n,M);
  139. }
  140. #ifndef IGL_HEADER_ONLY
  141. // Explicit template specialization
  142. template void igl::massmatrix<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, double>(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, igl::MassMatrixType, Eigen::SparseMatrix<double, 0, int>&);
  143. #endif