123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "arap_dof.h"
- #include "cotmatrix.h"
- #include "massmatrix.h"
- #include "speye.h"
- #include "repdiag.h"
- #include "repmat.h"
- #include "slice.h"
- #include "colon.h"
- #include "is_sparse.h"
- #include "mode.h"
- #include "is_symmetric.h"
- #include "group_sum_matrix.h"
- #include "arap_rhs.h"
- #include "covariance_scatter_matrix.h"
- #include "fit_rotations.h"
- #include "verbose.h"
- #include "print_ijv.h"
- #include "get_seconds_hires.h"
- //#include "MKLEigenInterface.h"
- #include "min_quad_dense.h"
- #include "get_seconds.h"
- #include "columnize.h"
- // defined if no early exit is supported, i.e., always take a fixed number of iterations
- #define IGL_ARAP_DOF_FIXED_ITERATIONS_COUNT
- // A carefull derivation of this implementation is given in the corresponding
- // matlab function arap_dof.m
- template <typename LbsMatrixType, typename SSCALAR>
- IGL_INLINE bool igl::arap_dof_precomputation(
- const Eigen::MatrixXd & V,
- const Eigen::MatrixXi & F,
- const LbsMatrixType & M,
- const Eigen::Matrix<int,Eigen::Dynamic,1> & G,
- ArapDOFData<LbsMatrixType, SSCALAR> & data)
- {
- using namespace Eigen;
- typedef Matrix<SSCALAR, Dynamic, Dynamic> MatrixXS;
- // number of mesh (domain) vertices
- int n = V.rows();
- // cache problem size
- data.n = n;
- // dimension of mesh
- data.dim = V.cols();
- assert(data.dim == M.rows()/n);
- assert(data.dim*n == M.rows());
- if(data.dim == 3)
- {
- // Check if z-coordinate is all zeros
- if(V.col(2).minCoeff() == 0 && V.col(2).maxCoeff() == 0)
- {
- data.effective_dim = 2;
- }
- }else
- {
- data.effective_dim = data.dim;
- }
- // Number of handles
- data.m = M.cols()/data.dim/(data.dim+1);
- assert(data.m*data.dim*(data.dim+1) == M.cols());
- //assert(m == C.rows());
- //printf("n=%d; dim=%d; m=%d;\n",n,data.dim,data.m);
- // Build cotangent laplacian
- SparseMatrix<double> Lcot;
- //printf("cotmatrix()\n");
- cotmatrix(V,F,Lcot);
- // Discrete laplacian (should be minus matlab version)
- SparseMatrix<double> Lapl = -2.0*Lcot;
- #ifdef EXTREME_VERBOSE
- cout<<"LaplIJV=["<<endl;print_ijv(Lapl,1);cout<<endl<<"];"<<
- endl<<"Lapl=sparse(LaplIJV(:,1),LaplIJV(:,2),LaplIJV(:,3),"<<
- Lapl.rows()<<","<<Lapl.cols()<<");"<<endl;
- #endif
- // Get group sum scatter matrix, when applied sums all entries of the same
- // group according to G
- SparseMatrix<double> G_sum;
- if(G.size() == 0)
- {
- speye(n,G_sum);
- }else
- {
- // groups are defined per vertex, convert to per face using mode
- Eigen::Matrix<int,Eigen::Dynamic,1> GG;
- if(data.energy == ARAP_ENERGY_TYPE_ELEMENTS)
- {
- MatrixXi GF(F.rows(),F.cols());
- for(int j = 0;j<F.cols();j++)
- {
- Matrix<int,Eigen::Dynamic,1> GFj;
- slice(G,F.col(j),GFj);
- GF.col(j) = GFj;
- }
- mode<int>(GF,2,GG);
- }else
- {
- GG=G;
- }
- //printf("group_sum_matrix()\n");
- group_sum_matrix(GG,G_sum);
- }
- #ifdef EXTREME_VERBOSE
- cout<<"G_sumIJV=["<<endl;print_ijv(G_sum,1);cout<<endl<<"];"<<
- endl<<"G_sum=sparse(G_sumIJV(:,1),G_sumIJV(:,2),G_sumIJV(:,3),"<<
- G_sum.rows()<<","<<G_sum.cols()<<");"<<endl;
- #endif
- // Get covariance scatter matrix, when applied collects the covariance matrices
- // used to fit rotations to during optimization
- SparseMatrix<double> CSM;
- //printf("covariance_scatter_matrix()\n");
- covariance_scatter_matrix(V,F,data.energy,CSM);
- #ifdef EXTREME_VERBOSE
- cout<<"CSMIJV=["<<endl;print_ijv(CSM,1);cout<<endl<<"];"<<
- endl<<"CSM=sparse(CSMIJV(:,1),CSMIJV(:,2),CSMIJV(:,3),"<<
- CSM.rows()<<","<<CSM.cols()<<");"<<endl;
- #endif
-
- // Build the covariance matrix "constructor". This is a set of *scatter*
- // matrices that when multiplied on the right by column of the transformation
- // matrix entries (the degrees of freedom) L, we get a stack of dim by 1
- // covariance matrix column, with a column in the stack for each rotation
- // *group*. The output is a list of matrices because we construct each column
- // in the stack of covariance matrices with an independent matrix-vector
- // multiplication.
- //
- // We want to build S which is a stack of dim by dim covariance matrices.
- // Thus S is dim*g by dim, where dim is the number of dimensions and g is the
- // number of groups. We can precompute dim matrices CSM_M such that column i
- // in S is computed as S(:,i) = CSM_M{i} * L, where L is a column of the
- // skinning transformation matrix values. To be clear, the covariance matrix
- // for group k is then given as the dim by dim matrix pulled from the stack:
- // S((k-1)*dim + 1:dim,:)
- // Apply group sum to each dimension's block of covariance scatter matrix
- SparseMatrix<double> G_sum_dim;
- repdiag(G_sum,data.dim,G_sum_dim);
- CSM = G_sum_dim * CSM;
- #ifdef EXTREME_VERBOSE
- cout<<"CSMIJV=["<<endl;print_ijv(CSM,1);cout<<endl<<"];"<<
- endl<<"CSM=sparse(CSMIJV(:,1),CSMIJV(:,2),CSMIJV(:,3),"<<
- CSM.rows()<<","<<CSM.cols()<<");"<<endl;
- #endif
- //printf("CSM_M()\n");
- // Precompute CSM times M for each dimension
- data.CSM_M.resize(data.dim);
- #ifdef EXTREME_VERBOSE
- cout<<"data.CSM_M = cell("<<data.dim<<",1);"<<endl;
- #endif
- // span of integers from 0 to n-1
- Eigen::Matrix<int,Eigen::Dynamic,1> span_n(n);
- for(int i = 0;i<n;i++)
- {
- span_n(i) = i;
- }
- // span of integers from 0 to M.cols()-1
- Eigen::Matrix<int,Eigen::Dynamic,1> span_mlbs_cols(M.cols());
- for(int i = 0;i<M.cols();i++)
- {
- span_mlbs_cols(i) = i;
- }
- // number of groups
- int k = CSM.rows()/data.dim;
- for(int i = 0;i<data.dim;i++)
- {
- //printf("CSM_M(): Mi\n");
- LbsMatrixType M_i;
- //printf("CSM_M(): slice\n");
- slice(M,(span_n.array()+i*n).matrix().eval(),span_mlbs_cols,M_i);
- LbsMatrixType M_i_dim;
- data.CSM_M[i].resize(k*data.dim,data.m*data.dim*(data.dim+1));
- assert(data.CSM_M[i].cols() == M.cols());
- for(int j = 0;j<data.dim;j++)
- {
- SparseMatrix<double> CSMj;
- //printf("CSM_M(): slice\n");
- slice(
- CSM,
- colon<int>(j*k,(j+1)*k-1),
- colon<int>(j*n,(j+1)*n-1),
- CSMj);
- assert(CSMj.rows() == k);
- assert(CSMj.cols() == n);
- LbsMatrixType CSMjM_i = CSMj * M_i;
- if(is_sparse(CSMjM_i))
- {
- // Convert to full
- //printf("CSM_M(): full\n");
- MatrixXd CSMjM_ifull(CSMjM_i);
- // printf("CSM_M[%d]: %d %d\n",i,data.CSM_M[i].rows(),data.CSM_M[i].cols());
- // printf("CSM_M[%d].block(%d*%d=%d,0,%d,%d): %d %d\n",i,j,k,CSMjM_i.rows(),CSMjM_i.cols(),
- // data.CSM_M[i].block(j*k,0,CSMjM_i.rows(),CSMjM_i.cols()).rows(),
- // data.CSM_M[i].block(j*k,0,CSMjM_i.rows(),CSMjM_i.cols()).cols());
- // printf("CSM_MjMi: %d %d\n",i,CSMjM_i.rows(),CSMjM_i.cols());
- // printf("CSM_MjM_ifull: %d %d\n",i,CSMjM_ifull.rows(),CSMjM_ifull.cols());
- data.CSM_M[i].block(j*k,0,CSMjM_i.rows(),CSMjM_i.cols()) = CSMjM_ifull;
- }else
- {
- data.CSM_M[i].block(j*k,0,CSMjM_i.rows(),CSMjM_i.cols()) = CSMjM_i;
- }
- }
- #ifdef EXTREME_VERBOSE
- cout<<"CSM_Mi=["<<endl<<data.CSM_M[i]<<endl<<"];"<<endl;
- #endif
- }
- // precompute arap_rhs matrix
- //printf("arap_rhs()\n");
- SparseMatrix<double> K;
- arap_rhs(V,F,V.cols(),data.energy,K);
- //#ifdef EXTREME_VERBOSE
- // cout<<"KIJV=["<<endl;print_ijv(K,1);cout<<endl<<"];"<<
- // endl<<"K=sparse(KIJV(:,1),KIJV(:,2),KIJV(:,3),"<<
- // K.rows()<<","<<K.cols()<<");"<<endl;
- //#endif
- // Precompute left muliplication by M and right multiplication by G_sum
- SparseMatrix<double> G_sumT = G_sum.transpose();
- SparseMatrix<double> G_sumT_dim_dim;
- repdiag(G_sumT,data.dim*data.dim,G_sumT_dim_dim);
- LbsMatrixType MT = M.transpose();
- // If this is a bottle neck then consider reordering matrix multiplication
- data.M_KG = -4.0 * (MT * (K * G_sumT_dim_dim));
- //#ifdef EXTREME_VERBOSE
- // cout<<"data.M_KGIJV=["<<endl;print_ijv(data.M_KG,1);cout<<endl<<"];"<<
- // endl<<"data.M_KG=sparse(data.M_KGIJV(:,1),data.M_KGIJV(:,2),data.M_KGIJV(:,3),"<<
- // data.M_KG.rows()<<","<<data.M_KG.cols()<<");"<<endl;
- //#endif
- // Precompute system matrix
- //printf("A()\n");
- SparseMatrix<double> A;
- repdiag(Lapl,data.dim,A);
- data.Q = MT * (A * M);
- //#ifdef EXTREME_VERBOSE
- // cout<<"QIJV=["<<endl;print_ijv(data.Q,1);cout<<endl<<"];"<<
- // endl<<"Q=sparse(QIJV(:,1),QIJV(:,2),QIJV(:,3),"<<
- // data.Q.rows()<<","<<data.Q.cols()<<");"<<endl;
- //#endif
- // Always do dynamics precomputation so we can hot-switch
- //if(data.with_dynamics)
- //{
- // Build cotangent laplacian
- SparseMatrix<double> Mass;
- //printf("massmatrix()\n");
- massmatrix(V,F,(F.cols()>3?MASSMATRIX_TYPE_BARYCENTRIC:MASSMATRIX_TYPE_VORONOI),Mass);
- //cout<<"MIJV=["<<endl;print_ijv(Mass,1);cout<<endl<<"];"<<
- // endl<<"M=sparse(MIJV(:,1),MIJV(:,2),MIJV(:,3),"<<
- // Mass.rows()<<","<<Mass.cols()<<");"<<endl;
- //speye(data.n,Mass);
- SparseMatrix<double> Mass_rep;
- repdiag(Mass,data.dim,Mass_rep);
- // Multiply either side by weights matrix (should be dense)
- data.Mass_tilde = MT * Mass_rep * M;
- MatrixXd ones(data.dim*data.n,data.dim);
- for(int i = 0;i<data.n;i++)
- {
- for(int d = 0;d<data.dim;d++)
- {
- ones(i+d*data.n,d) = 1;
- }
- }
- data.fgrav = MT * (Mass_rep * ones);
- data.fext = MatrixXS::Zero(MT.rows(),1);
- //data.fgrav = MT * (ones);
- //}
- // This may/should be superfluous
- //printf("is_symmetric()\n");
- if(!is_symmetric(data.Q))
- {
- //printf("Fixing symmetry...\n");
- // "Fix" symmetry
- LbsMatrixType QT = data.Q.transpose();
- LbsMatrixType Q_copy = data.Q;
- data.Q = 0.5*(Q_copy+QT);
- // Check that ^^^ this really worked. It doesn't always
- //assert(is_symmetric(*Q));
- }
- //printf("arap_dof_precomputation() succeeded... so far...\n");
- verbose("Number of handles: %i\n", data.m);
- return true;
- }
- /////////////////////////////////////////////////////////////////////////
- //
- // STATIC FUNCTIONS (These should be removed or properly defined)
- //
- /////////////////////////////////////////////////////////////////////////
- namespace igl
- {
- // returns maximal difference of 'blok' from scalar times 3x3 identity:
- template <typename SSCALAR>
- inline static SSCALAR maxBlokErr(const Eigen::Matrix3f &blok)
- {
- SSCALAR mD;
- SSCALAR value = blok(0,0);
- SSCALAR diff1 = fabs(blok(1,1) - value);
- SSCALAR diff2 = fabs(blok(2,2) - value);
- if (diff1 > diff2) mD = diff1;
- else mD = diff2;
-
- for (int v=0; v<3; v++)
- {
- for (int w=0; w<3; w++)
- {
- if (v == w)
- {
- continue;
- }
- if (mD < fabs(blok(v, w)))
- {
- mD = fabs(blok(v, w));
- }
- }
- }
-
- return mD;
- }
-
- // converts CSM_M_SSCALAR[0], CSM_M_SSCALAR[1], CSM_M_SSCALAR[2] into one
- // "condensed" matrix CSM while checking we're not loosing any information by
- // this process; specifically, returns maximal difference from scaled 3x3
- // identity blocks, which should be pretty small number
- template <typename MatrixXS>
- static typename MatrixXS::Scalar condense_CSM(
- const std::vector<MatrixXS> &CSM_M_SSCALAR,
- int numBones,
- int dim,
- MatrixXS &CSM)
- {
- const int numRows = CSM_M_SSCALAR[0].rows();
- assert(CSM_M_SSCALAR[0].cols() == dim*(dim+1)*numBones);
- assert(CSM_M_SSCALAR[1].cols() == dim*(dim+1)*numBones);
- assert(CSM_M_SSCALAR[2].cols() == dim*(dim+1)*numBones);
- assert(CSM_M_SSCALAR[1].rows() == numRows);
- assert(CSM_M_SSCALAR[2].rows() == numRows);
-
- const int numCols = (dim + 1)*numBones;
- CSM.resize(numRows, numCols);
-
- typedef typename MatrixXS::Scalar SSCALAR;
- SSCALAR maxDiff = 0.0f;
-
- for (int r=0; r<numRows; r++)
- {
- for (int coord=0; coord<dim+1; coord++)
- {
- for (int b=0; b<numBones; b++)
- {
- // this is just a test if we really have a multiple of 3x3 identity
- Eigen::Matrix3f blok;
- for (int v=0; v<3; v++)
- {
- for (int w=0; w<3; w++)
- {
- blok(v,w) = CSM_M_SSCALAR[v](r, coord*(numBones*dim) + b + w*numBones);
- }
- }
-
- //SSCALAR value[3];
- //for (int v=0; v<3; v++)
- // CSM_M_SSCALAR[v](r, coord*(numBones*dim) + b + v*numBones);
-
- SSCALAR mD = maxBlokErr<SSCALAR>(blok);
- if (mD > maxDiff) maxDiff = mD;
-
- // use the first value:
- CSM(r, coord*numBones + b) = blok(0,0);
- }
- }
- }
-
- return maxDiff;
- }
-
- // splits x_0, ... , x_dim coordinates in column vector 'L' into a numBones*(dimp1) x dim matrix 'Lsep';
- // assumes 'Lsep' has already been preallocated
- //
- // is this the same as uncolumnize? no.
- template <typename MatL, typename MatLsep>
- static void splitColumns(
- const MatL &L,
- int numBones,
- int dim,
- int dimp1,
- MatLsep &Lsep)
- {
- assert(L.cols() == 1);
- assert(L.rows() == dim*(dimp1)*numBones);
-
- assert(Lsep.rows() == (dimp1)*numBones && Lsep.cols() == dim);
-
- for (int b=0; b<numBones; b++)
- {
- for (int coord=0; coord<dimp1; coord++)
- {
- for (int c=0; c<dim; c++)
- {
- Lsep(coord*numBones + b, c) = L(coord*numBones*dim + c*numBones + b, 0);
- }
- }
- }
- }
-
-
- // the inverse of splitColumns, i.e., takes numBones*(dimp1) x dim matrix 'Lsep' and merges the dimensions
- // into columns vector 'L' (which is assumed to be already allocated):
- //
- // is this the same as columnize? no.
- template <typename MatrixXS>
- static void mergeColumns(const MatrixXS &Lsep, int numBones, int dim, int dimp1, MatrixXS &L)
- {
- assert(L.cols() == 1);
- assert(L.rows() == dim*(dimp1)*numBones);
-
- assert(Lsep.rows() == (dimp1)*numBones && Lsep.cols() == dim);
-
- for (int b=0; b<numBones; b++)
- {
- for (int coord=0; coord<dimp1; coord++)
- {
- for (int c=0; c<dim; c++)
- {
- L(coord*numBones*dim + c*numBones + b, 0) = Lsep(coord*numBones + b, c);
- }
- }
- }
- }
-
- // converts "Solve1" the "rotations" part of FullSolve matrix (the first part)
- // into one "condensed" matrix CSolve1 while checking we're not loosing any
- // information by this process; specifically, returns maximal difference from
- // scaled 3x3 identity blocks, which should be pretty small number
- template <typename MatrixXS>
- static typename MatrixXS::Scalar condense_Solve1(MatrixXS &Solve1, int numBones, int numGroups, int dim, MatrixXS &CSolve1)
- {
- assert(Solve1.rows() == dim*(dim + 1)*numBones);
- assert(Solve1.cols() == dim*dim*numGroups);
-
- typedef typename MatrixXS::Scalar SSCALAR;
- SSCALAR maxDiff = 0.0f;
-
- CSolve1.resize((dim + 1)*numBones, dim*numGroups);
- for (int rowCoord=0; rowCoord<dim+1; rowCoord++)
- {
- for (int b=0; b<numBones; b++)
- {
- for (int colCoord=0; colCoord<dim; colCoord++)
- {
- for (int g=0; g<numGroups; g++)
- {
- Eigen::Matrix3f blok;
- for (int r=0; r<3; r++)
- {
- for (int c=0; c<3; c++)
- {
- blok(r, c) = Solve1(rowCoord*numBones*dim + r*numBones + b, colCoord*numGroups*dim + c*numGroups + g);
- }
- }
-
- SSCALAR mD = maxBlokErr<SSCALAR>(blok);
- if (mD > maxDiff) maxDiff = mD;
-
- CSolve1(rowCoord*numBones + b, colCoord*numGroups + g) = blok(0,0);
- }
- }
- }
- }
-
- return maxDiff;
- }
- }
- template <typename LbsMatrixType, typename SSCALAR>
- IGL_INLINE bool igl::arap_dof_recomputation(
- const Eigen::Matrix<int,Eigen::Dynamic,1> & fixed_dim,
- const Eigen::SparseMatrix<double> & A_eq,
- ArapDOFData<LbsMatrixType, SSCALAR> & data)
- {
- using namespace Eigen;
- typedef Matrix<SSCALAR, Dynamic, Dynamic> MatrixXS;
- LbsMatrixType * Q;
- LbsMatrixType Qdyn;
- if(data.with_dynamics)
- {
- // multiply by 1/timestep and to quadratic coefficients matrix
- // Might be missing a 0.5 here
- LbsMatrixType Q_copy = data.Q;
- Qdyn = Q_copy + (1.0/(data.h*data.h))*data.Mass_tilde;
- Q = &Qdyn;
- // This may/should be superfluous
- //printf("is_symmetric()\n");
- if(!is_symmetric(*Q))
- {
- //printf("Fixing symmetry...\n");
- // "Fix" symmetry
- LbsMatrixType QT = (*Q).transpose();
- LbsMatrixType Q_copy = *Q;
- *Q = 0.5*(Q_copy+QT);
- // Check that ^^^ this really worked. It doesn't always
- //assert(is_symmetric(*Q));
- }
- }else
- {
- Q = &data.Q;
- }
- assert((int)data.CSM_M.size() == data.dim);
- assert(A_eq.cols() == data.m*data.dim*(data.dim+1));
- data.fixed_dim = fixed_dim;
- if(fixed_dim.size() > 0)
- {
- assert(fixed_dim.maxCoeff() < data.m*data.dim*(data.dim+1));
- assert(fixed_dim.minCoeff() >= 0);
- }
- #ifdef EXTREME_VERBOSE
- cout<<"data.fixed_dim=["<<endl<<data.fixed_dim<<endl<<"]+1;"<<endl;
- #endif
- // Compute dense solve matrix (alternative of matrix factorization)
- //printf("min_quad_dense_precompute()\n");
- MatrixXd Qfull(*Q);
- MatrixXd A_eqfull(A_eq);
- MatrixXd M_Solve;
- double timer0_start = get_seconds_hires();
- bool use_lu = data.effective_dim != 2;
- //use_lu = false;
- //printf("use_lu: %s\n",(use_lu?"TRUE":"FALSE"));
- min_quad_dense_precompute(Qfull, A_eqfull, use_lu,M_Solve);
- double timer0_end = get_seconds_hires();
- verbose("Bob timing: %.20f\n", (timer0_end - timer0_start)*1000.0);
- // Precompute full solve matrix:
- const int fsRows = data.m * data.dim * (data.dim + 1); // 12 * number_of_bones
- const int fsCols1 = data.M_KG.cols(); // 9 * number_of_posConstraints
- const int fsCols2 = A_eq.rows(); // number_of_posConstraints
- data.M_FullSolve.resize(fsRows, fsCols1 + fsCols2);
- // note the magical multiplicative constant "-0.5", I've no idea why it has
- // to be there :)
- data.M_FullSolve <<
- (-0.5 * M_Solve.block(0, 0, fsRows, fsRows) * data.M_KG).template cast<SSCALAR>(),
- M_Solve.block(0, fsRows, fsRows, fsCols2).template cast<SSCALAR>();
- if(data.with_dynamics)
- {
- printf(
- "---------------------------------------------------------------------\n"
- "\n\n\nWITH DYNAMICS recomputation\n\n\n"
- "---------------------------------------------------------------------\n"
- );
- // Also need to save Π1 before it gets multiplied by Ktilde (aka M_KG)
- data.Pi_1 = M_Solve.block(0, 0, fsRows, fsRows).template cast<SSCALAR>();
- }
- // Precompute condensed matrices,
- // first CSM:
- std::vector<MatrixXS> CSM_M_SSCALAR;
- CSM_M_SSCALAR.resize(data.dim);
- for (int i=0; i<data.dim; i++) CSM_M_SSCALAR[i] = data.CSM_M[i].template cast<SSCALAR>();
- SSCALAR maxErr1 = condense_CSM(CSM_M_SSCALAR, data.m, data.dim, data.CSM);
- verbose("condense_CSM maxErr = %.15f (this should be close to zero)\n", maxErr1);
- assert(fabs(maxErr1) < 1e-5);
-
- // and then solveBlock1:
- // number of groups
- const int k = data.CSM_M[0].rows()/data.dim;
- MatrixXS SolveBlock1 = data.M_FullSolve.block(0, 0, data.M_FullSolve.rows(), data.dim * data.dim * k);
- SSCALAR maxErr2 = condense_Solve1(SolveBlock1, data.m, k, data.dim, data.CSolveBlock1);
- verbose("condense_Solve1 maxErr = %.15f (this should be close to zero)\n", maxErr2);
- assert(fabs(maxErr2) < 1e-5);
- return true;
- }
- template <typename LbsMatrixType, typename SSCALAR>
- IGL_INLINE bool igl::arap_dof_update(
- const ArapDOFData<LbsMatrixType, SSCALAR> & data,
- const Eigen::Matrix<double,Eigen::Dynamic,1> & B_eq,
- const Eigen::MatrixXd & L0,
- const int max_iters,
- const double
- #ifdef IGL_ARAP_DOF_FIXED_ITERATIONS_COUNT
- tol,
- #else
- /*tol*/,
- #endif
- Eigen::MatrixXd & L
- )
- {
- using namespace Eigen;
- typedef Matrix<SSCALAR, Dynamic, Dynamic> MatrixXS;
- #ifdef ARAP_GLOBAL_TIMING
- double timer_start = get_seconds_hires();
- #endif
- // number of dimensions
- assert((int)data.CSM_M.size() == data.dim);
- assert((int)L0.size() == (data.m)*data.dim*(data.dim+1));
- assert(max_iters >= 0);
- assert(tol >= 0);
- // timing variables
- double
- sec_start,
- sec_covGather,
- sec_fitRotations,
- //sec_rhs,
- sec_prepMult,
- sec_solve, sec_end;
- assert(L0.cols() == 1);
- #ifdef EXTREME_VERBOSE
- cout<<"dim="<<data.dim<<";"<<endl;
- cout<<"m="<<data.m<<";"<<endl;
- #endif
- // number of groups
- const int k = data.CSM_M[0].rows()/data.dim;
- for(int i = 0;i<data.dim;i++)
- {
- assert(data.CSM_M[i].rows()/data.dim == k);
- }
- #ifdef EXTREME_VERBOSE
- cout<<"k="<<k<<";"<<endl;
- #endif
- // resize output and initialize with initial guess
- L = L0;
- #ifndef IGL_ARAP_DOF_FIXED_ITERATIONS_COUNT
- // Keep track of last solution
- MatrixXS L_prev;
- #endif
- // We will be iterating on L_SSCALAR, only at the end we convert back to double
- MatrixXS L_SSCALAR = L.cast<SSCALAR>();
- int iters = 0;
- #ifndef IGL_ARAP_DOF_FIXED_ITERATIONS_COUNT
- double max_diff = tol+1;
- #endif
- MatrixXS S(k*data.dim,data.dim);
- MatrixXS R(data.dim,data.dim*k);
- Eigen::Matrix<SSCALAR,Eigen::Dynamic,1> Rcol(data.dim * data.dim * k);
- Matrix<SSCALAR,Dynamic,1> B_eq_SSCALAR = B_eq.cast<SSCALAR>();
- Matrix<SSCALAR,Dynamic,1> B_eq_fix_SSCALAR;
- Matrix<SSCALAR,Dynamic,1> L0SSCALAR = L0.cast<SSCALAR>();
- slice(L0SSCALAR, data.fixed_dim, B_eq_fix_SSCALAR);
- //MatrixXS rhsFull(Rcol.rows() + B_eq.rows() + B_eq_fix_SSCALAR.rows(), 1);
- MatrixXS Lsep(data.m*(data.dim + 1), 3);
- const MatrixXS L_part2 =
- data.M_FullSolve.block(0, Rcol.rows(), data.M_FullSolve.rows(), B_eq_SSCALAR.rows()) * B_eq_SSCALAR;
- const MatrixXS L_part3 =
- data.M_FullSolve.block(0, Rcol.rows() + B_eq_SSCALAR.rows(), data.M_FullSolve.rows(), B_eq_fix_SSCALAR.rows()) * B_eq_fix_SSCALAR;
- MatrixXS L_part2and3 = L_part2 + L_part3;
- // preallocate workspace variables:
- MatrixXS Rxyz(k*data.dim, data.dim);
- MatrixXS L_part1xyz((data.dim + 1) * data.m, data.dim);
- MatrixXS L_part1(data.dim * (data.dim + 1) * data.m, 1);
- #ifdef ARAP_GLOBAL_TIMING
- double timer_prepFinished = get_seconds_hires();
- #endif
- #ifdef IGL_ARAP_DOF_FIXED_ITERATIONS_COUNT
- while(iters < max_iters)
- #else
- while(iters < max_iters && max_diff > tol)
- #endif
- {
- if(data.print_timings)
- {
- sec_start = get_seconds_hires();
- }
- #ifndef IGL_ARAP_DOF_FIXED_ITERATIONS_COUNT
- L_prev = L_SSCALAR;
- #endif
- ///////////////////////////////////////////////////////////////////////////
- // Local step: Fix positions, fit rotations
- ///////////////////////////////////////////////////////////////////////////
-
- // Gather covariance matrices
- splitColumns(L_SSCALAR, data.m, data.dim, data.dim + 1, Lsep);
- S = data.CSM * Lsep;
- // interestingly, this doesn't seem to be so slow, but
- //MKL is still 2x faster (probably due to AVX)
- //#ifdef IGL_ARAP_DOF_DOUBLE_PRECISION_SOLVE
- // MKL_matMatMult_double(S, data.CSM, Lsep);
- //#else
- // MKL_matMatMult_single(S, data.CSM, Lsep);
- //#endif
-
- if(data.print_timings)
- {
- sec_covGather = get_seconds_hires();
- }
- #ifdef EXTREME_VERBOSE
- cout<<"S=["<<endl<<S<<endl<<"];"<<endl;
- #endif
- // Fit rotations to covariance matrices
- if(data.effective_dim == 2)
- {
- fit_rotations_planar(S,R);
- }else
- {
- #ifdef __SSE__ // fit_rotations_SSE will convert to float if necessary
- fit_rotations_SSE(S,R);
- #else
- fit_rotations(S,false,R);
- #endif
- }
- #ifdef EXTREME_VERBOSE
- cout<<"R=["<<endl<<R<<endl<<"];"<<endl;
- #endif
- if(data.print_timings)
- {
- sec_fitRotations = get_seconds_hires();
- }
-
- ///////////////////////////////////////////////////////////////////////////
- // "Global" step: fix rotations per mesh vertex, solve for
- // linear transformations at handles
- ///////////////////////////////////////////////////////////////////////////
- // all this shuffling is retarded and not completely negligible time-wise;
- // TODO: change fit_rotations_XXX so it returns R in the format ready for
- // CSolveBlock1 multiplication
- columnize(R, k, 2, Rcol);
- #ifdef EXTREME_VERBOSE
- cout<<"Rcol=["<<endl<<Rcol<<endl<<"];"<<endl;
- #endif
- splitColumns(Rcol, k, data.dim, data.dim, Rxyz);
-
- if(data.print_timings)
- {
- sec_prepMult = get_seconds_hires();
- }
-
- L_part1xyz = data.CSolveBlock1 * Rxyz;
- //#ifdef IGL_ARAP_DOF_DOUBLE_PRECISION_SOLVE
- // MKL_matMatMult_double(L_part1xyz, data.CSolveBlock1, Rxyz);
- //#else
- // MKL_matMatMult_single(L_part1xyz, data.CSolveBlock1, Rxyz);
- //#endif
- mergeColumns(L_part1xyz, data.m, data.dim, data.dim + 1, L_part1);
- if(data.with_dynamics)
- {
- // Consider reordering or precomputing matrix multiplications
- MatrixXS L_part1_dyn(data.dim * (data.dim + 1) * data.m, 1);
- // Eigen can't parse this:
- //L_part1_dyn =
- // -(2.0/(data.h*data.h)) * data.Pi_1 * data.Mass_tilde * data.L0 +
- // (1.0/(data.h*data.h)) * data.Pi_1 * data.Mass_tilde * data.Lm1;
- // -1.0 because we've moved these linear terms to the right hand side
- //MatrixXS temp = -1.0 *
- // ((-2.0/(data.h*data.h)) * data.L0.array() +
- // (1.0/(data.h*data.h)) * data.Lm1.array()).matrix();
- //MatrixXS temp = -1.0 *
- // ( (-1.0/(data.h*data.h)) * data.L0.array() +
- // (1.0/(data.h*data.h)) * data.Lm1.array()
- // (-1.0/(data.h*data.h)) * data.L0.array() +
- // ).matrix();
- //Lvel0 = (1.0/(data.h)) * data.Lm1.array() - data.L0.array();
- MatrixXS temp = -1.0 *
- ( (-1.0/(data.h*data.h)) * data.L0.array() +
- (1.0/(data.h)) * data.Lvel0.array()
- ).matrix();
- MatrixXd temp_d = temp.template cast<double>();
- MatrixXd temp_g = data.fgrav*(data.grav_mag*data.grav_dir);
- assert(data.fext.rows() == temp_g.rows());
- assert(data.fext.cols() == temp_g.cols());
- MatrixXd temp2 = data.Mass_tilde * temp_d + temp_g + data.fext.template cast<double>();
- MatrixXS temp2_f = temp2.template cast<SSCALAR>();
- L_part1_dyn = data.Pi_1 * temp2_f;
- L_part1.array() = L_part1.array() + L_part1_dyn.array();
- }
- //L_SSCALAR = L_part1 + L_part2and3;
- assert(L_SSCALAR.rows() == L_part1.rows() && L_SSCALAR.rows() == L_part2and3.rows());
- for (int i=0; i<L_SSCALAR.rows(); i++)
- {
- L_SSCALAR(i, 0) = L_part1(i, 0) + L_part2and3(i, 0);
- }
- #ifdef EXTREME_VERBOSE
- cout<<"L=["<<endl<<L<<endl<<"];"<<endl;
- #endif
- if(data.print_timings)
- {
- sec_solve = get_seconds_hires();
- }
- #ifndef IGL_ARAP_DOF_FIXED_ITERATIONS_COUNT
- // Compute maximum absolute difference with last iteration's solution
- max_diff = (L_SSCALAR-L_prev).eval().array().abs().matrix().maxCoeff();
- #endif
- iters++;
- if(data.print_timings)
- {
- sec_end = get_seconds_hires();
- #ifndef WIN32
- // trick to get sec_* variables to compile without warning on mac
- if(false)
- #endif
- printf(
- "\ntotal iteration time = %f "
- "[local: covGather = %f, "
- "fitRotations = %f, "
- "global: prep = %f, "
- "solve = %f, "
- "error = %f [ms]]\n",
- (sec_end - sec_start)*1000.0,
- (sec_covGather - sec_start)*1000.0,
- (sec_fitRotations - sec_covGather)*1000.0,
- (sec_prepMult - sec_fitRotations)*1000.0,
- (sec_solve - sec_prepMult)*1000.0,
- (sec_end - sec_solve)*1000.0 );
- }
- }
- L = L_SSCALAR.template cast<double>();
- assert(L.cols() == 1);
- #ifdef ARAP_GLOBAL_TIMING
- double timer_finito = get_seconds_hires();
- printf(
- "ARAP preparation = %f, "
- "all %i iterations = %f [ms]\n",
- (timer_prepFinished - timer_start)*1000.0,
- max_iters,
- (timer_finito - timer_prepFinished)*1000.0);
- #endif
- return true;
- }
- #ifdef IGL_STATIC_LIBRARY
- // Explicit instanciation
- template bool igl::arap_dof_update<Eigen::Matrix<double, -1, -1, 0, -1, -1>, double>(ArapDOFData<Eigen::Matrix<double, -1, -1, 0, -1, -1>, double> const&, Eigen::Matrix<double, -1, 1, 0, -1, 1> const&, Eigen::Matrix<double, -1, -1, 0, -1, -1> const&, int, double, Eigen::Matrix<double, -1, -1, 0, -1, -1>&);
- template bool igl::arap_dof_recomputation<Eigen::Matrix<double, -1, -1, 0, -1, -1>, double>(Eigen::Matrix<int, -1, 1, 0, -1, 1> const&, Eigen::SparseMatrix<double, 0, int> const&, ArapDOFData<Eigen::Matrix<double, -1, -1, 0, -1, -1>, double>&);
- template bool igl::arap_dof_precomputation<Eigen::Matrix<double, -1, -1, 0, -1, -1>, double>(Eigen::Matrix<double, -1, -1, 0, -1, -1> const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, -1, -1, 0, -1, -1> const&, Eigen::Matrix<int, -1, 1, 0, -1, 1> const&, ArapDOFData<Eigen::Matrix<double, -1, -1, 0, -1, -1>, double>&);
- template bool igl::arap_dof_update<Eigen::Matrix<double, -1, -1, 0, -1, -1>, float>(igl::ArapDOFData<Eigen::Matrix<double, -1, -1, 0, -1, -1>, float> const&, Eigen::Matrix<double, -1, 1, 0, -1, 1> const&, Eigen::Matrix<double, -1, -1, 0, -1, -1> const&, int, double, Eigen::Matrix<double, -1, -1, 0, -1, -1>&);
- template bool igl::arap_dof_recomputation<Eigen::Matrix<double, -1, -1, 0, -1, -1>, float>(Eigen::Matrix<int, -1, 1, 0, -1, 1> const&, Eigen::SparseMatrix<double, 0, int> const&, igl::ArapDOFData<Eigen::Matrix<double, -1, -1, 0, -1, -1>, float>&);
- template bool igl::arap_dof_precomputation<Eigen::Matrix<double, -1, -1, 0, -1, -1>, float>(Eigen::Matrix<double, -1, -1, 0, -1, -1> const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, -1, -1, 0, -1, -1> const&, Eigen::Matrix<int, -1, 1, 0, -1, 1> const&, igl::ArapDOFData<Eigen::Matrix<double, -1, -1, 0, -1, -1>, float>&);
- #endif
|