123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2014 Daniele Panozzo <daniele.panozzo@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "frame_field_deformer.h"
- #include <Eigen/Dense>
- #include <Eigen/Sparse>
- #include <vector>
- #include <igl/cotmatrix_entries.h>
- #include <igl/cotmatrix.h>
- #include <igl/vertex_triangle_adjacency.h>
- namespace igl
- {
- class Frame_field_deformer
- {
- public:
- IGL_INLINE Frame_field_deformer();
- IGL_INLINE ~Frame_field_deformer();
- // Initialize the optimizer
- IGL_INLINE void init(const Eigen::MatrixXd& _V, const Eigen::MatrixXi& _F, const Eigen::MatrixXd& _D1, const Eigen::MatrixXd& _D2, double _Lambda, double _perturb_rotations, int _fixed = 1);
- // Run N optimization steps
- IGL_INLINE void optimize(int N, bool reset = false);
- // Reset optimization
- IGL_INLINE void reset_opt();
- // Precomputation of all components
- IGL_INLINE void precompute_opt();
- // Precomputation for deformation energy
- IGL_INLINE void precompute_ARAP(Eigen::SparseMatrix<double> & Lff, Eigen::MatrixXd & LfcVc);
- // Precomputation for regularization
- IGL_INLINE void precompute_SMOOTH(Eigen::SparseMatrix<double> & MS, Eigen::MatrixXd & bS);
- // extracts a r x c block from sparse matrix mat into sparse matrix m1
- // (r0,c0) is upper left entry of block
- IGL_INLINE void extractBlock(Eigen::SparseMatrix<double> & mat, int r0, int c0, int r, int c, Eigen::SparseMatrix<double> & m1);
- // computes optimal rotations for faces of m wrt current coords in mw.V
- // returns a 3x3 matrix
- IGL_INLINE void compute_optimal_rotations();
- // global optimization step - linear system
- IGL_INLINE void compute_optimal_positions();
- // compute the output XField from deformation gradient
- IGL_INLINE void computeXField(std::vector< Eigen::Matrix<double,3,2> > & XF);
- // computes in WW the ideal warp at each tri to make the frame field a cross
- IGL_INLINE void compute_idealWarp(std::vector< Eigen::Matrix<double,3,3> > & WW);
- // -------------------------------- Variables ----------------------------------------------------
- // Mesh I/O:
- Eigen::MatrixXd V; // Original mesh - vertices
- Eigen::MatrixXi F; // Original mesh - faces
- std::vector<std::vector<int> > VT; // Vertex to triangle topology
- std::vector<std::vector<int> > VTi; // Vertex to triangle topology
- Eigen::MatrixXd V_w; // Warped mesh - vertices
- std::vector< Eigen::Matrix<double,3,2> > FF; // frame field FF in 3D (parallel to m.F)
- std::vector< Eigen::Matrix<double,3,3> > WW; // warping matrices to make a cross field (parallel to m.F)
- std::vector< Eigen::Matrix<double,3,2> > XF; // pseudo-cross field from solution (parallel to m.F)
- int fixed;
- double perturb_rotations; // perturbation to rotation matrices
- // Numerics
- int nfree,nconst; // number of free/constrained vertices in the mesh - default all-but-1/1
- Eigen::MatrixXd C; // cotangent matrix of m
- Eigen::SparseMatrix<double> L; // Laplacian matrix of m
- Eigen::SparseMatrix<double> M; // matrix for global optimization - pre-conditioned
- Eigen::MatrixXd RHS; // pre-computed part of known term in global optimization
- std::vector< Eigen::Matrix<double,3,3> > RW; // optimal rotation-warping matrices (parallel to m.F) -- INCORPORATES WW
- Eigen::SimplicialCholesky<Eigen::SparseMatrix<double> > solver; // solver for linear system in global opt.
- // Parameters
- private:
- double Lambda = 0.1; // weight of energy regularization
- };
- IGL_INLINE Frame_field_deformer::Frame_field_deformer() {}
- IGL_INLINE Frame_field_deformer::~Frame_field_deformer() {}
- IGL_INLINE void Frame_field_deformer::init(const Eigen::MatrixXd& _V,
- const Eigen::MatrixXi& _F,
- const Eigen::MatrixXd& _D1,
- const Eigen::MatrixXd& _D2,
- double _Lambda,
- double _perturb_rotations,
- int _fixed)
- {
- V = _V;
- F = _F;
- assert(_D1.rows() == _D2.rows());
- FF.clear();
- for (unsigned i=0; i < _D1.rows(); ++i)
- {
- Eigen::Matrix<double,3,2> ff;
- ff.col(0) = _D1.row(i);
- ff.col(1) = _D2.row(i);
- FF.push_back(ff);
- }
- fixed = _fixed;
- Lambda = _Lambda;
- perturb_rotations = _perturb_rotations;
- reset_opt();
- precompute_opt();
- }
- IGL_INLINE void Frame_field_deformer::optimize(int N, bool reset)
- {
- //Reset optimization
- if (reset)
- reset_opt();
- // Iterative Local/Global optimization
- for (int i=0; i<N;i++)
- {
- compute_optimal_rotations();
- compute_optimal_positions();
- computeXField(XF);
- }
- }
- IGL_INLINE void Frame_field_deformer::reset_opt()
- {
- V_w = V;
- for (unsigned i=0; i<V_w.rows(); ++i)
- for (unsigned j=0; j<V_w.cols(); ++j)
- V_w(i,j) += (double(rand())/double(RAND_MAX))*10e-4*perturb_rotations;
- }
- // precomputation of all components
- IGL_INLINE void Frame_field_deformer::precompute_opt()
- {
- using namespace Eigen;
- nfree = V.rows() - fixed; // free vertices (at the beginning ov m.V) - global
- nconst = V.rows()-nfree; // #constrained vertices
- igl::vertex_triangle_adjacency(V,F,VT,VTi); // compute vertex to face relationship
- igl::cotmatrix_entries(V,F,C); // cotangent matrix for opt. rotations - global
- igl::cotmatrix(V,F,L);
- SparseMatrix<double> MA; // internal matrix for ARAP-warping energy
- MatrixXd LfcVc; // RHS (partial) for ARAP-warping energy
- SparseMatrix<double> MS; // internal matrix for smoothing energy
- MatrixXd bS; // RHS (full) for smoothing energy
- precompute_ARAP(MA,LfcVc); // precompute terms for the ARAP-warp part
- precompute_SMOOTH(MS,bS); // precompute terms for the smoothing part
- compute_idealWarp(WW); // computes the ideal warps
- RW.resize(F.rows()); // init rotation matrices - global
- M = (1-Lambda)*MA + Lambda*MS; // matrix for linear system - global
- RHS = (1-Lambda)*LfcVc + Lambda*bS; // RHS (partial) for linear system - global
- solver.compute(M); // system pre-conditioning
- if (solver.info()!=Eigen::Success) {fprintf(stderr,"Decomposition failed in pre-conditioning!\n"); exit(-1);}
- fprintf(stdout,"Preconditioning done.\n");
- }
- IGL_INLINE void Frame_field_deformer::precompute_ARAP(Eigen::SparseMatrix<double> & Lff, Eigen::MatrixXd & LfcVc)
- {
- using namespace Eigen;
- fprintf(stdout,"Precomputing ARAP terms\n");
- SparseMatrix<double> LL = -4*L;
- Lff = SparseMatrix<double>(nfree,nfree);
- extractBlock(LL,0,0,nfree,nfree,Lff);
- SparseMatrix<double> Lfc = SparseMatrix<double>(nfree,nconst);
- extractBlock(LL,0,nfree,nfree,nconst,Lfc);
- LfcVc = - Lfc * V_w.block(nfree,0,nconst,3);
- }
- IGL_INLINE void Frame_field_deformer::precompute_SMOOTH(Eigen::SparseMatrix<double> & MS, Eigen::MatrixXd & bS)
- {
- using namespace Eigen;
- fprintf(stdout,"Precomputing SMOOTH terms\n");
- SparseMatrix<double> LL = 4*L*L;
- // top-left
- MS = SparseMatrix<double>(nfree,nfree);
- extractBlock(LL,0,0,nfree,nfree,MS);
- // top-right
- SparseMatrix<double> Mfc = SparseMatrix<double>(nfree,nconst);
- extractBlock(LL,0,nfree,nfree,nconst,Mfc);
- MatrixXd MfcVc = Mfc * V_w.block(nfree,0,nconst,3);
- bS = (LL*V).block(0,0,nfree,3)-MfcVc;
- }
- IGL_INLINE void Frame_field_deformer::extractBlock(Eigen::SparseMatrix<double> & mat, int r0, int c0, int r, int c, Eigen::SparseMatrix<double> & m1)
- {
- std::vector<Eigen::Triplet<double> > tripletList;
- for (int k=c0; k<c0+c; ++k)
- for (Eigen::SparseMatrix<double>::InnerIterator it(mat,k); it; ++it)
- {
- if (it.row()>=r0 && it.row()<r0+r)
- tripletList.push_back(Eigen::Triplet<double>(it.row()-r0,it.col()-c0,it.value()));
- }
- m1.setFromTriplets(tripletList.begin(), tripletList.end());
- }
- IGL_INLINE void Frame_field_deformer::compute_optimal_rotations()
- {
- using namespace Eigen;
- Matrix<double,3,3> r,S,P,PP,D;
- for (int i=0;i<F.rows();i++)
- {
- // input tri --- could be done once and saved in a matrix
- P.col(0) = (V.row(F(i,1))-V.row(F(i,0))).transpose();
- P.col(1) = (V.row(F(i,2))-V.row(F(i,1))).transpose();
- P.col(2) = (V.row(F(i,0))-V.row(F(i,2))).transpose();
- P = WW[i] * P; // apply ideal warp
- // current tri
- PP.col(0) = (V_w.row(F(i,1))-V_w.row(F(i,0))).transpose();
- PP.col(1) = (V_w.row(F(i,2))-V_w.row(F(i,1))).transpose();
- PP.col(2) = (V_w.row(F(i,0))-V_w.row(F(i,2))).transpose();
- // cotangents
- D << C(i,2), 0, 0,
- 0, C(i,0), 0,
- 0, 0, C(i,1);
- S = PP*D*P.transpose();
- Eigen::JacobiSVD<Matrix<double,3,3> > svd(S, Eigen::ComputeFullU | Eigen::ComputeFullV );
- Matrix<double,3,3> su = svd.matrixU();
- Matrix<double,3,3> sv = svd.matrixV();
- r = su*sv.transpose();
- if (r.determinant()<0) // correct reflections
- {
- su(0,2)=-su(0,2); su(1,2)=-su(1,2); su(2,2)=-su(2,2);
- r = su*sv.transpose();
- }
- RW[i] = r*WW[i]; // RW INCORPORATES IDEAL WARP WW!!!
- }
- }
- IGL_INLINE void Frame_field_deformer::compute_optimal_positions()
- {
- using namespace Eigen;
- // compute variable RHS of ARAP-warp part of the system
- MatrixXd b(nfree,3); // fx3 known term of the system
- MatrixXd X; // result
- int t; // triangles incident to edge (i,j)
- int vi,i1,i2; // index of vertex i wrt tri t0
- for (int i=0;i<nfree;i++)
- {
- b.row(i) << 0.0, 0.0, 0.0;
- for (int k=0;k<(int)VT[i].size();k++) // for all incident triangles
- {
- t = VT[i][k]; // incident tri
- vi = (i==F(t,0))?0:(i==F(t,1))?1:(i==F(t,2))?2:3; // index of i in t
- assert(vi!=3);
- i1 = F(t,(vi+1)%3);
- i2 = F(t,(vi+2)%3);
- b.row(i)+=(C(t,(vi+2)%3)*RW[t]*(V.row(i1)-V.row(i)).transpose()).transpose();
- b.row(i)+=(C(t,(vi+1)%3)*RW[t]*(V.row(i2)-V.row(i)).transpose()).transpose();
- }
- }
- b/=2.0;
- b=-4*b;
- b*=(1-Lambda); // blend
- b+=RHS; // complete known term
- X = solver.solve(b);
- if (solver.info()!=Eigen::Success) {printf("Solving linear system failed!\n"); return;}
- // copy result to mw.V
- for (int i=0;i<nfree;i++)
- V_w.row(i)=X.row(i);
- }
- IGL_INLINE void Frame_field_deformer::computeXField(std::vector< Eigen::Matrix<double,3,2> > & XF)
- {
- using namespace Eigen;
- Matrix<double,3,3> P,PP,DG;
- XF.resize(F.rows());
- for (int i=0;i<F.rows();i++)
- {
- int i0,i1,i2;
- // indexes of vertices of face i
- i0 = F(i,0); i1 = F(i,1); i2 = F(i,2);
- // input frame
- P.col(0) = (V.row(i1)-V.row(i0)).transpose();
- P.col(1) = (V.row(i2)-V.row(i0)).transpose();
- P.col(2) = P.col(0).cross(P.col(1));
- // output triangle brought to origin
- PP.col(0) = (V_w.row(i1)-V_w.row(i0)).transpose();
- PP.col(1) = (V_w.row(i2)-V_w.row(i0)).transpose();
- PP.col(2) = PP.col(0).cross(PP.col(1));
- // deformation gradient
- DG = PP * P.inverse();
- XF[i] = DG * FF[i];
- }
- }
- // computes in WW the ideal warp at each tri to make the frame field a cross
- IGL_INLINE void Frame_field_deformer::compute_idealWarp(std::vector< Eigen::Matrix<double,3,3> > & WW)
- {
- using namespace Eigen;
- WW.resize(F.rows());
- for (int i=0;i<(int)FF.size();i++)
- {
- Vector3d v0,v1,v2;
- v0 = FF[i].col(0);
- v1 = FF[i].col(1);
- v2=v0.cross(v1); v2.normalize(); // normal
- Matrix3d A,AI; // compute affine map A that brings:
- A << v0[0], v1[0], v2[0], // first vector of FF to x unary vector
- v0[1], v1[1], v2[1], // second vector of FF to xy plane
- v0[2], v1[2], v2[2]; // triangle normal to z unary vector
- AI = A.inverse();
- // polar decomposition to discard rotational component (unnecessary but makes it easier)
- Eigen::JacobiSVD<Matrix<double,3,3> > svd(AI, Eigen::ComputeFullU | Eigen::ComputeFullV );
- //Matrix<double,3,3> au = svd.matrixU();
- Matrix<double,3,3> av = svd.matrixV();
- DiagonalMatrix<double,3> as(svd.singularValues());
- WW[i] = av*as*av.transpose();
- }
- }
- }
- IGL_INLINE void igl::frame_field_deformer(
- const Eigen::MatrixXd& V,
- const Eigen::MatrixXi& F,
- const Eigen::MatrixXd& FF1,
- const Eigen::MatrixXd& FF2,
- Eigen::MatrixXd& V_d,
- Eigen::MatrixXd& FF1_d,
- Eigen::MatrixXd& FF2_d,
- const int iterations,
- const double lambda,
- const bool perturb_initial_guess)
- {
- using namespace Eigen;
- // Solvers
- Frame_field_deformer deformer;
- // Init optimizer
- deformer.init(V, F, FF1, FF2, lambda, perturb_initial_guess ? 0.1 : 0);
- // Optimize
- deformer.optimize(iterations,true);
- // Copy positions
- V_d = deformer.V_w;
- // Allocate
- FF1_d.resize(F.rows(),3);
- FF2_d.resize(F.rows(),3);
- // Copy frame field
- for(unsigned i=0; i<deformer.XF.size(); ++i)
- {
- FF1_d.row(i) = deformer.XF[i].col(0);
- FF2_d.row(i) = deformer.XF[i].col(1);
- }
- }
- #ifdef IGL_STATIC_LIBRARY
- // Explicit template specialization
- #endif
|