py_doc.cpp 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205
  1. const char *__doc_igl_active_set = R"igl_Qu8mg5v7(// Known Bugs: rows of [Aeq;Aieq] **must** be linearly independent. Should be
  2. // using QR decomposition otherwise:
  3. // http://www.okstate.edu/sas/v8/sashtml/ormp/chap5/sect32.htm
  4. //
  5. // ACTIVE_SET Minimize quadratic energy
  6. //
  7. // 0.5*Z'*A*Z + Z'*B + C with constraints
  8. //
  9. // that Z(known) = Y, optionally also subject to the constraints Aeq*Z = Beq,
  10. // and further optionally subject to the linear inequality constraints that
  11. // Aieq*Z <= Bieq and constant inequality constraints lx <= x <= ux
  12. //
  13. // Inputs:
  14. // A n by n matrix of quadratic coefficients
  15. // B n by 1 column of linear coefficients
  16. // known list of indices to known rows in Z
  17. // Y list of fixed values corresponding to known rows in Z
  18. // Aeq meq by n list of linear equality constraint coefficients
  19. // Beq meq by 1 list of linear equality constraint constant values
  20. // Aieq mieq by n list of linear inequality constraint coefficients
  21. // Bieq mieq by 1 list of linear inequality constraint constant values
  22. // lx n by 1 list of lower bounds [] implies -Inf
  23. // ux n by 1 list of upper bounds [] implies Inf
  24. // params struct of additional parameters (see below)
  25. // Z if not empty, is taken to be an n by 1 list of initial guess values
  26. // (see output)
  27. // Outputs:
  28. // Z n by 1 list of solution values
  29. // Returns true on success, false on error
  30. //
  31. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  32. // secs, igl/min_quad_with_fixed.h 7.1 secs
  33. //)igl_Qu8mg5v7";
  34. const char *__doc_igl_arap_precomputation = R"igl_Qu8mg5v7(// Compute necessary information to start using an ARAP deformation
  35. //
  36. // Inputs:
  37. // V #V by dim list of mesh positions
  38. // F #F by simplex-size list of triangle|tet indices into V
  39. // dim dimension being used at solve time. For deformation usually dim =
  40. // V.cols(), for surface parameterization V.cols() = 3 and dim = 2
  41. // b #b list of "boundary" fixed vertex indices into V
  42. // Outputs:
  43. // data struct containing necessary precomputation)igl_Qu8mg5v7";
  44. const char *__doc_igl_arap_solve = R"igl_Qu8mg5v7(// Inputs:
  45. // bc #b by dim list of boundary conditions
  46. // data struct containing necessary precomputation and parameters
  47. // U #V by dim initial guess)igl_Qu8mg5v7";
  48. const char *__doc_igl_avg_edge_length = R"igl_Qu8mg5v7(// Compute the average edge length for the given triangle mesh
  49. // Templates:
  50. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  51. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  52. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  53. // Inputs:
  54. // V eigen matrix #V by 3
  55. // F #F by simplex-size list of mesh faces (must be simplex)
  56. // Outputs:
  57. // l average edge length
  58. //
  59. // See also: adjacency_matrix)igl_Qu8mg5v7";
  60. const char *__doc_igl_barycenter = R"igl_Qu8mg5v7(// Computes the barycenter of every simplex
  61. //
  62. // Inputs:
  63. // V #V x dim matrix of vertex coordinates
  64. // F #F x simplex_size matrix of indices of simplex corners into V
  65. // Output:
  66. // BC #F x dim matrix of 3d vertices
  67. //)igl_Qu8mg5v7";
  68. const char *__doc_igl_barycentric_coordinates = R"igl_Qu8mg5v7(// Compute barycentric coordinates in a tet
  69. //
  70. // Inputs:
  71. // P #P by 3 Query points in 3d
  72. // A #P by 3 Tet corners in 3d
  73. // B #P by 3 Tet corners in 3d
  74. // C #P by 3 Tet corners in 3d
  75. // D #P by 3 Tet corners in 3d
  76. // Outputs:
  77. // L #P by 4 list of barycentric coordinates
  78. // )igl_Qu8mg5v7";
  79. const char *__doc_igl_boundary_facets = R"igl_Qu8mg5v7(// BOUNDARY_FACETS Determine boundary faces (edges) of tetrahedra (triangles)
  80. // stored in T (analogous to qptoolbox's `outline` and `boundary_faces`).
  81. //
  82. // Templates:
  83. // IntegerT integer-value: e.g. int
  84. // IntegerF integer-value: e.g. int
  85. // Input:
  86. // T tetrahedron (triangle) index list, m by 4 (3), where m is the number of tetrahedra
  87. // Output:
  88. // F list of boundary faces, n by 3 (2), where n is the number of boundary faces
  89. //
  90. //)igl_Qu8mg5v7";
  91. const char *__doc_igl_boundary_loop = R"igl_Qu8mg5v7(// Compute list of ordered boundary loops for a manifold mesh.
  92. //
  93. // Templates:
  94. // Index index type
  95. // Inputs:
  96. // F #V by dim list of mesh faces
  97. // Outputs:
  98. // L list of loops where L[i] = ordered list of boundary vertices in loop i
  99. //)igl_Qu8mg5v7";
  100. const char *__doc_igl_cat = R"igl_Qu8mg5v7(// Perform concatenation of a two matrices along a single dimension
  101. // If dim == 1, then C = [A;B]. If dim == 2 then C = [A B]
  102. //
  103. // Template:
  104. // Scalar scalar data type for sparse matrices like double or int
  105. // Mat matrix type for all matrices (e.g. MatrixXd, SparseMatrix)
  106. // MatC matrix type for ouput matrix (e.g. MatrixXd) needs to support
  107. // resize
  108. // Inputs:
  109. // A first input matrix
  110. // B second input matrix
  111. // dim dimension along which to concatenate, 0 or 1
  112. // Outputs:
  113. // C output matrix
  114. // )igl_Qu8mg5v7";
  115. const char *__doc_igl_collapse_edge = R"igl_Qu8mg5v7(See collapse_edge for the documentation.)igl_Qu8mg5v7";
  116. const char *__doc_igl_colon = R"igl_Qu8mg5v7(// Colon operator like matlab's colon operator. Enumerats values between low
  117. // and hi with step step.
  118. // Templates:
  119. // L should be a eigen matrix primitive type like int or double
  120. // S should be a eigen matrix primitive type like int or double
  121. // H should be a eigen matrix primitive type like int or double
  122. // T should be a eigen matrix primitive type like int or double
  123. // Inputs:
  124. // low starting value if step is valid then this is *always* the first
  125. // element of I
  126. // step step difference between sequential elements returned in I,
  127. // remember this will be cast to template T at compile time. If low<hi
  128. // then step must be positive. If low>hi then step must be negative.
  129. // Otherwise I will be set to empty.
  130. // hi ending value, if (hi-low)%step is zero then this will be the last
  131. // element in I. If step is positive there will be no elements greater
  132. // than hi, vice versa if hi<low
  133. // Output:
  134. // I list of values from low to hi with step size step)igl_Qu8mg5v7";
  135. const char *__doc_igl_comb_cross_field = R"igl_Qu8mg5v7(// Inputs:
  136. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  137. // F #F by 4 eigen Matrix of face (quad) indices
  138. // PD1in #F by 3 eigen Matrix of the first per face cross field vector
  139. // PD2in #F by 3 eigen Matrix of the second per face cross field vector
  140. // Output:
  141. // PD1out #F by 3 eigen Matrix of the first combed cross field vector
  142. // PD2out #F by 3 eigen Matrix of the second combed cross field vector
  143. //)igl_Qu8mg5v7";
  144. const char *__doc_igl_comb_frame_field = R"igl_Qu8mg5v7(// Inputs:
  145. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  146. // F #F by 4 eigen Matrix of face (quad) indices
  147. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  148. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  149. // BIS1_combed #F by 3 eigen Matrix of the first combed bisector field vector
  150. // BIS2_combed #F by 3 eigen Matrix of the second combed bisector field vector
  151. // Output:
  152. // PD1_combed #F by 3 eigen Matrix of the first combed cross field vector
  153. // PD2_combed #F by 3 eigen Matrix of the second combed cross field vector
  154. //)igl_Qu8mg5v7";
  155. const char *__doc_igl_compute_frame_field_bisectors = R"igl_Qu8mg5v7(// Compute bisectors of a frame field defined on mesh faces
  156. // Inputs:
  157. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  158. // F #F by 3 eigen Matrix of face (triangle) indices
  159. // B1 #F by 3 eigen Matrix of face (triangle) base vector 1
  160. // B2 #F by 3 eigen Matrix of face (triangle) base vector 2
  161. // PD1 #F by 3 eigen Matrix of the first per face frame field vector
  162. // PD2 #F by 3 eigen Matrix of the second per face frame field vector
  163. // Output:
  164. // BIS1 #F by 3 eigen Matrix of the first per face frame field bisector
  165. // BIS2 #F by 3 eigen Matrix of the second per face frame field bisector
  166. //)igl_Qu8mg5v7";
  167. const char *__doc_igl_copyleft_cgal_mesh_boolean = R"igl_Qu8mg5v7(// MESH_BOOLEAN Compute boolean csg operations on "solid", consistently
  168. // oriented meshes.
  169. //
  170. // Inputs:
  171. // VA #VA by 3 list of vertex positions of first mesh
  172. // FA #FA by 3 list of triangle indices into VA
  173. // VB #VB by 3 list of vertex positions of second mesh
  174. // FB #FB by 3 list of triangle indices into VB
  175. // type type of boolean operation
  176. // Outputs:
  177. // VC #VC by 3 list of vertex positions of boolean result mesh
  178. // FC #FC by 3 list of triangle indices into VC
  179. // J #FC list of indices into [FA;FA.rows()+FB] revealing "birth" facet
  180. // Returns true if inputs induce a piecewise constant winding number
  181. // field and type is valid
  182. //
  183. // See also: mesh_boolean_cork, intersect_other,
  184. // remesh_self_intersections)igl_Qu8mg5v7";
  185. const char *__doc_igl_copyleft_comiso_miq = R"igl_Qu8mg5v7(// Inputs:
  186. // V #V by 3 list of mesh vertex 3D positions
  187. // F #F by 3 list of faces indices in V
  188. // PD1 #V by 3 first line of the Jacobian per triangle
  189. // PD2 #V by 3 second line of the Jacobian per triangle
  190. // (optional, if empty it will be a vector in the tangent plane orthogonal to PD1)
  191. // scale global scaling for the gradient (controls the quads resolution)
  192. // stiffness weight for the stiffness iterations
  193. // direct_round greedily round all integer variables at once (greatly improves optimization speed but lowers quality)
  194. // iter stiffness iterations (0 = no stiffness)
  195. // local_iter number of local iterations for the integer rounding
  196. // do_round enables the integer rounding (disabling it could be useful for debugging)
  197. // round_vertices id of additional vertices that should be snapped to integer coordinates
  198. // hard_features #H by 2 list of pairs of vertices that belongs to edges that should be snapped to integer coordinates
  199. //
  200. // Output:
  201. // UV #UV by 2 list of vertices in 2D
  202. // FUV #FUV by 3 list of face indices in UV
  203. //
  204. // TODO: rename the parameters name in the cpp consistenly
  205. // improve the handling of hard_features, right now it might fail in difficult cases)igl_Qu8mg5v7";
  206. const char *__doc_igl_copyleft_comiso_nrosy = R"igl_Qu8mg5v7(// Generate a N-RoSy field from a sparse set of constraints
  207. //
  208. // Inputs:
  209. // V #V by 3 list of mesh vertex coordinates
  210. // F #F by 3 list of mesh faces (must be triangles)
  211. // b #B by 1 list of constrained face indices
  212. // bc #B by 3 list of representative vectors for the constrained
  213. // faces
  214. // b_soft #S by 1 b for soft constraints
  215. // w_soft #S by 1 weight for the soft constraints (0-1)
  216. // bc_soft #S by 3 bc for soft constraints
  217. // N the degree of the N-RoSy vector field
  218. // soft the strenght of the soft contraints w.r.t. smoothness
  219. // (0 -> smoothness only, 1->constraints only)
  220. // Outputs:
  221. // R #F by 3 the representative vectors of the interpolated field
  222. // S #V by 1 the singularity index for each vertex (0 = regular))igl_Qu8mg5v7";
  223. const char *__doc_igl_copyleft_marching_cubes = R"igl_Qu8mg5v7(// marching_cubes( values, points, x_res, y_res, z_res, vertices, faces )
  224. //
  225. // performs marching cubes reconstruction on the grid defined by values, and
  226. // points, and generates vertices and faces
  227. //
  228. // Input:
  229. // values #number_of_grid_points x 1 array -- the scalar values of an
  230. // implicit function defined on the grid points (<0 in the inside of the
  231. // surface, 0 on the border, >0 outside)
  232. // points #number_of_grid_points x 3 array -- 3-D positions of the grid
  233. // points, ordered in x,y,z order:
  234. // points[index] = the point at (x,y,z) where :
  235. // x = (index % (xres -1),
  236. // y = (index / (xres-1)) %(yres-1),
  237. // z = index / (xres -1) / (yres -1) ).
  238. // where x,y,z index x, y, z dimensions
  239. // i.e. index = x + y*xres + z*xres*yres
  240. // xres resolutions of the grid in x dimension
  241. // yres resolutions of the grid in y dimension
  242. // zres resolutions of the grid in z dimension
  243. // Output:
  244. // vertices #V by 3 list of mesh vertex positions
  245. // faces #F by 3 list of mesh triangle indices
  246. //)igl_Qu8mg5v7";
  247. const char *__doc_igl_copyleft_swept_volume = R"igl_Qu8mg5v7(// Compute the surface of the swept volume of a solid object with surface
  248. // (V,F) mesh under going rigid motion.
  249. //
  250. // Inputs:
  251. // V #V by 3 list of mesh positions in reference pose
  252. // F #F by 3 list of mesh indices into V
  253. // transform function handle so that transform(t) returns the rigid
  254. // transformation at time t∈[0,1]
  255. // steps number of time steps: steps=3 --> t∈{0,0.5,1}
  256. // grid_res number of grid cells on the longest side containing the
  257. // motion (isolevel+1 cells will also be added on each side as padding)
  258. // isolevel distance level to be contoured as swept volume
  259. // Outputs:
  260. // SV #SV by 3 list of mesh positions of the swept surface
  261. // SF #SF by 3 list of mesh faces into SV)igl_Qu8mg5v7";
  262. const char *__doc_igl_copyleft_tetgen_tetrahedralize = R"igl_Qu8mg5v7(// Mesh the interior of a surface mesh (V,F) using tetgen
  263. //
  264. // Inputs:
  265. // V #V by 3 vertex position list
  266. // F #F list of polygon face indices into V (0-indexed)
  267. // switches string of tetgen options (See tetgen documentation) e.g.
  268. // "pq1.414a0.01" tries to mesh the interior of a given surface with
  269. // quality and area constraints
  270. // "" will mesh the convex hull constrained to pass through V (ignores F)
  271. // Outputs:
  272. // TV #V by 3 vertex position list
  273. // TT #T by 4 list of tet face indices
  274. // TF #F by 3 list of triangle face indices
  275. // Returns status:
  276. // 0 success
  277. // 1 tetgen threw exception
  278. // 2 tetgen did not crash but could not create any tets (probably there are
  279. // holes, duplicate faces etc.)
  280. // -1 other error)igl_Qu8mg5v7";
  281. const char *__doc_igl_cotmatrix = R"igl_Qu8mg5v7(// Constructs the cotangent stiffness matrix (discrete laplacian) for a given
  282. // mesh (V,F).
  283. //
  284. // Templates:
  285. // DerivedV derived type of eigen matrix for V (e.g. derived from
  286. // MatrixXd)
  287. // DerivedF derived type of eigen matrix for F (e.g. derived from
  288. // MatrixXi)
  289. // Scalar scalar type for eigen sparse matrix (e.g. double)
  290. // Inputs:
  291. // V #V by dim list of mesh vertex positions
  292. // F #F by simplex_size list of mesh faces (must be triangles)
  293. // Outputs:
  294. // L #V by #V cotangent matrix, each row i corresponding to V(i,:)
  295. //
  296. // See also: adjacency_matrix
  297. //
  298. // Note: This Laplacian uses the convention that diagonal entries are
  299. // **minus** the sum of off-diagonal entries. The diagonal entries are
  300. // therefore in general negative and the matrix is **negative** semi-definite
  301. // (immediately, -L is **positive** semi-definite)
  302. //
  303. // Known bugs: off by 1e-16 on regular grid. I think its a problem of
  304. // arithmetic order in cotmatrix_entries.h: C(i,e) = (arithmetic)/dblA/4)igl_Qu8mg5v7";
  305. const char *__doc_igl_covariance_scatter_matrix = R"igl_Qu8mg5v7(// Construct the covariance scatter matrix for a given arap energy
  306. // Inputs:
  307. // V #V by Vdim list of initial domain positions
  308. // F #F by 3 list of triangle indices into V
  309. // energy ARAPEnergyType enum value defining which energy is being used.
  310. // See ARAPEnergyType.h for valid options and explanations.
  311. // Outputs:
  312. // CSM dim*#V/#F by dim*#V sparse matrix containing special laplacians along
  313. // the diagonal so that when multiplied by V gives covariance matrix
  314. // elements, can be used to speed up covariance matrix computation)igl_Qu8mg5v7";
  315. const char *__doc_igl_cross_field_missmatch = R"igl_Qu8mg5v7(// Inputs:
  316. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  317. // F #F by 3 eigen Matrix of face (quad) indices
  318. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  319. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  320. // isCombed boolean, specifying whether the field is combed (i.e. matching has been precomputed.
  321. // If not, the field is combed first.
  322. // Output:
  323. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  324. // across all face edges
  325. //)igl_Qu8mg5v7";
  326. const char *__doc_igl_cut_mesh_from_singularities = R"igl_Qu8mg5v7(// Given a mesh (V,F) and the integer mismatch of a cross field per edge
  327. // (MMatch), finds the cut_graph connecting the singularities (seams) and the
  328. // degree of the singularities singularity_index
  329. //
  330. // Input:
  331. // V #V by 3 list of mesh vertex positions
  332. // F #F by 3 list of faces
  333. // MMatch #F by 3 list of per corner integer mismatch
  334. // Outputs:
  335. // seams #F by 3 list of per corner booleans that denotes if an edge is a
  336. // seam or not
  337. //)igl_Qu8mg5v7";
  338. const char *__doc_igl_deform_skeleton = R"igl_Qu8mg5v7(// Deform a skeleton.
  339. //
  340. // Inputs:
  341. // C #C by 3 list of joint positions
  342. // BE #BE by 2 list of bone edge indices
  343. // vA #BE list of bone transformations
  344. // Outputs
  345. // CT #BE*2 by 3 list of deformed joint positions
  346. // BET #BE by 2 list of bone edge indices (maintains order)
  347. //)igl_Qu8mg5v7";
  348. const char *__doc_igl_directed_edge_orientations = R"igl_Qu8mg5v7(// Determine rotations that take each edge from the x-axis to its given rest
  349. // orientation.
  350. //
  351. // Inputs:
  352. // C #C by 3 list of edge vertex positions
  353. // E #E by 2 list of directed edges
  354. // Outputs:
  355. // Q #E list of quaternions
  356. //)igl_Qu8mg5v7";
  357. const char *__doc_igl_directed_edge_parents = R"igl_Qu8mg5v7(// Recover "parents" (preceeding edges) in a tree given just directed edges.
  358. //
  359. // Inputs:
  360. // E #E by 2 list of directed edges
  361. // Outputs:
  362. // P #E list of parent indices into E (-1) means root
  363. //)igl_Qu8mg5v7";
  364. const char *__doc_igl_doublearea = R"igl_Qu8mg5v7(// DOUBLEAREA computes twice the area for each input triangle[quad]
  365. //
  366. // Templates:
  367. // DerivedV derived type of eigen matrix for V (e.g. derived from
  368. // MatrixXd)
  369. // DerivedF derived type of eigen matrix for F (e.g. derived from
  370. // MatrixXi)
  371. // DeriveddblA derived type of eigen matrix for dblA (e.g. derived from
  372. // MatrixXd)
  373. // Inputs:
  374. // V #V by dim list of mesh vertex positions
  375. // F #F by simplex_size list of mesh faces (must be triangles or quads)
  376. // Outputs:
  377. // dblA #F list of triangle[quad] double areas (SIGNED only for 2D input)
  378. //
  379. // Known bug: For dim==3 complexity is O(#V + #F)!! Not just O(#F). This is a big deal
  380. // if you have 1million unreferenced vertices and 1 face)igl_Qu8mg5v7";
  381. const char *__doc_igl_doublearea_single = R"igl_Qu8mg5v7(// Single triangle in 2D!
  382. //
  383. // This should handle streams of corners not just single corners)igl_Qu8mg5v7";
  384. const char *__doc_igl_doublearea_quad = R"igl_Qu8mg5v7(// DOUBLEAREA_QUAD computes twice the area for each input quadrilateral
  385. //
  386. // Inputs:
  387. // V #V by dim list of mesh vertex positions
  388. // F #F by simplex_size list of mesh faces (must be quadrilaterals)
  389. // Outputs:
  390. // dblA #F list of quadrilateral double areas
  391. //)igl_Qu8mg5v7";
  392. const char *__doc_igl_dqs = R"igl_Qu8mg5v7(// Dual quaternion skinning
  393. //
  394. // Inputs:
  395. // V #V by 3 list of rest positions
  396. // W #W by #C list of weights
  397. // vQ #C list of rotation quaternions
  398. // vT #C list of translation vectors
  399. // Outputs:
  400. // U #V by 3 list of new positions)igl_Qu8mg5v7";
  401. const char *__doc_igl_edge_lengths = R"igl_Qu8mg5v7(// Constructs a list of lengths of edges opposite each index in a face
  402. // (triangle/tet) list
  403. //
  404. // Templates:
  405. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  406. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  407. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  408. // Inputs:
  409. // V eigen matrix #V by 3
  410. // F #F by 2 list of mesh edges
  411. // or
  412. // F #F by 3 list of mesh faces (must be triangles)
  413. // or
  414. // T #T by 4 list of mesh elements (must be tets)
  415. // Outputs:
  416. // L #F by {1|3|6} list of edge lengths
  417. // for edges, column of lengths
  418. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  419. // for tets, columns correspond to edges
  420. // [3 0],[3 1],[3 2],[1 2],[2 0],[0 1]
  421. //)igl_Qu8mg5v7";
  422. const char *__doc_igl_eigs = R"igl_Qu8mg5v7(See eigs for the documentation.)igl_Qu8mg5v7";
  423. const char *__doc_igl_embree_ambient_occlusion = R"igl_Qu8mg5v7(// Compute ambient occlusion per given point
  424. //
  425. // Inputs:
  426. // ei EmbreeIntersector containing (V,F)
  427. // P #P by 3 list of origin points
  428. // N #P by 3 list of origin normals
  429. // Outputs:
  430. // S #P list of ambient occlusion values between 1 (fully occluded) and
  431. // 0 (not occluded)
  432. //)igl_Qu8mg5v7";
  433. const char *__doc_igl_embree_reorient_facets_raycast = R"igl_Qu8mg5v7(// Orient each component (identified by C) of a mesh (V,F) using ambient
  434. // occlusion such that the front side is less occluded than back side, as
  435. // described in "A Simple Method for Correcting Facet Orientations in
  436. // Polygon Meshes Based on Ray Casting" [Takayama et al. 2014].
  437. //
  438. // Inputs:
  439. // V #V by 3 list of vertex positions
  440. // F #F by 3 list of triangle indices
  441. // rays_total Total number of rays that will be shot
  442. // rays_minimum Minimum number of rays that each patch should receive
  443. // facet_wise Decision made for each face independently, no use of patches
  444. // (i.e., each face is treated as a patch)
  445. // use_parity Use parity mode
  446. // is_verbose Verbose output to cout
  447. // Outputs:
  448. // I #F list of whether face has been flipped
  449. // C #F list of patch ID (output of bfs_orient > manifold patches))igl_Qu8mg5v7";
  450. const char *__doc_igl_find_cross_field_singularities = R"igl_Qu8mg5v7(// Inputs:
  451. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  452. // F #F by 3 eigen Matrix of face (quad) indices
  453. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  454. // across all face edges
  455. // Output:
  456. // isSingularity #V by 1 boolean eigen Vector indicating the presence of a singularity on a vertex
  457. // singularityIndex #V by 1 integer eigen Vector containing the singularity indices
  458. //)igl_Qu8mg5v7";
  459. const char *__doc_igl_fit_rotations = R"igl_Qu8mg5v7(// Known issues: This seems to be implemented in Eigen/Geometry:
  460. // Eigen::umeyama
  461. //
  462. // FIT_ROTATIONS Given an input mesh and new positions find rotations for
  463. // every covariance matrix in a stack of covariance matrices
  464. //
  465. // Inputs:
  466. // S nr*dim by dim stack of covariance matrices
  467. // single_precision whether to use single precision (faster)
  468. // Outputs:
  469. // R dim by dim * nr list of rotations
  470. //)igl_Qu8mg5v7";
  471. const char *__doc_igl_fit_rotations_planar = R"igl_Qu8mg5v7(// FIT_ROTATIONS Given an input mesh and new positions find 2D rotations for
  472. // every vertex that best maps its one ring to the new one ring
  473. //
  474. // Inputs:
  475. // S nr*dim by dim stack of covariance matrices, third column and every
  476. // third row will be ignored
  477. // Outputs:
  478. // R dim by dim * nr list of rotations, third row and third column of each
  479. // rotation will just be identity
  480. //)igl_Qu8mg5v7";
  481. const char *__doc_igl_fit_rotations_SSE = R"igl_Qu8mg5v7(See fit_rotations_SSE for the documentation.)igl_Qu8mg5v7";
  482. const char *__doc_igl_floor = R"igl_Qu8mg5v7(// Floor a given matrix to nearest integers
  483. //
  484. // Inputs:
  485. // X m by n matrix of scalars
  486. // Outputs:
  487. // Y m by n matrix of floored integers)igl_Qu8mg5v7";
  488. const char *__doc_igl_forward_kinematics = R"igl_Qu8mg5v7(// Given a skeleton and a set of relative bone rotations compute absolute
  489. // rigid transformations for each bone.
  490. //
  491. // Inputs:
  492. // C #C by dim list of joint positions
  493. // BE #BE by 2 list of bone edge indices
  494. // P #BE list of parent indices into BE
  495. // dQ #BE list of relative rotations
  496. // dT #BE list of relative translations
  497. // Outputs:
  498. // vQ #BE list of absolute rotations
  499. // vT #BE list of absolute translations)igl_Qu8mg5v7";
  500. const char *__doc_igl_gaussian_curvature = R"igl_Qu8mg5v7(// Compute discrete local integral gaussian curvature (angle deficit, without
  501. // averaging by local area).
  502. //
  503. // Inputs:
  504. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  505. // F #F by 3 eigen Matrix of face (triangle) indices
  506. // Output:
  507. // K #V by 1 eigen Matrix of discrete gaussian curvature values
  508. //)igl_Qu8mg5v7";
  509. const char *__doc_igl_get_seconds = R"igl_Qu8mg5v7(// Return the current time in seconds since program start
  510. //
  511. // Example:
  512. // const auto & tictoc = []()
  513. // {
  514. // static double t_start = igl::get_seconds();
  515. // double diff = igl::get_seconds()-t_start;
  516. // t_start += diff;
  517. // return diff;
  518. // };
  519. // tictoc();
  520. // ... // part 1
  521. // cout<<"part 1: "<<tictoc()<<endl;
  522. // ... // part 2
  523. // cout<<"part 2: "<<tictoc()<<endl;
  524. // ... // etc)igl_Qu8mg5v7";
  525. const char *__doc_igl_grad = R"igl_Qu8mg5v7(// Gradient of a scalar function defined on piecewise linear elements (mesh)
  526. // is constant on each triangle i,j,k:
  527. // grad(Xijk) = (Xj-Xi) * (Vi - Vk)^R90 / 2A + (Xk-Xi) * (Vj - Vi)^R90 / 2A
  528. // where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
  529. // i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
  530. // 90 degrees
  531. //)igl_Qu8mg5v7";
  532. const char *__doc_igl_harmonic = R"igl_Qu8mg5v7(// Compute k-harmonic weight functions "coordinates".
  533. //
  534. //
  535. // Inputs:
  536. // V #V by dim vertex positions
  537. // F #F by simplex-size list of element indices
  538. // b #b boundary indices into V
  539. // bc #b by #W list of boundary values
  540. // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
  541. // Outputs:
  542. // W #V by #W list of weights
  543. //)igl_Qu8mg5v7";
  544. const char *__doc_igl_hsv_to_rgb = R"igl_Qu8mg5v7(// Convert RGB to HSV
  545. //
  546. // Inputs:
  547. // h hue value (degrees: [0,360])
  548. // s saturation value ([0,1])
  549. // v value value ([0,1])
  550. // Outputs:
  551. // r red value ([0,1])
  552. // g green value ([0,1])
  553. // b blue value ([0,1]))igl_Qu8mg5v7";
  554. const char *__doc_igl_internal_angles = R"igl_Qu8mg5v7(// Compute internal angles for a triangle mesh
  555. //
  556. // Inputs:
  557. // V #V by dim eigen Matrix of mesh vertex nD positions
  558. // F #F by poly-size eigen Matrix of face (triangle) indices
  559. // Output:
  560. // K #F by poly-size eigen Matrix of internal angles
  561. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  562. //
  563. // Known Issues:
  564. // if poly-size ≠ 3 then dim must equal 3.)igl_Qu8mg5v7";
  565. const char *__doc_igl_invert_diag = R"igl_Qu8mg5v7(// Templates:
  566. // T should be a eigen sparse matrix primitive type like int or double
  567. // Inputs:
  568. // X an m by n sparse matrix
  569. // Outputs:
  570. // Y an m by n sparse matrix)igl_Qu8mg5v7";
  571. const char *__doc_igl_is_irregular_vertex = R"igl_Qu8mg5v7(// Determine if a vertex is irregular, i.e. it has more than 6 (triangles)
  572. // or 4 (quads) incident edges. Vertices on the boundary are ignored.
  573. //
  574. // Inputs:
  575. // V #V by dim list of vertex positions
  576. // F #F by 3[4] list of triangle[quads] indices
  577. // Returns #V vector of bools revealing whether vertices are singular
  578. //)igl_Qu8mg5v7";
  579. const char *__doc_igl_jet = R"igl_Qu8mg5v7(// JET like MATLAB's jet
  580. //
  581. // Inputs:
  582. // m number of colors
  583. // Outputs:
  584. // J m by list of RGB colors between 0 and 1
  585. //
  586. //#ifndef IGL_NO_EIGEN
  587. // void jet(const int m, Eigen::MatrixXd & J);
  588. //#endif
  589. // Wrapper for directly computing [r,g,b] values for a given factor f between
  590. // 0 and 1
  591. //
  592. // Inputs:
  593. // f factor determining color value as if 0 was min and 1 was max
  594. // Outputs:
  595. // r red value
  596. // g green value
  597. // b blue value)igl_Qu8mg5v7";
  598. const char *__doc_igl_lbs_matrix = R"igl_Qu8mg5v7(// LBS_MATRIX Linear blend skinning can be expressed by V' = M * T where V' is
  599. // a #V by dim matrix of deformed vertex positions (one vertex per row), M is a
  600. // #V by (dim+1)*#T (composed of weights and rest positions) and T is a
  601. // #T*(dim+1) by dim matrix of #T stacked transposed transformation matrices.
  602. // See equations (1) and (2) in "Fast Automatic Skinning Transformations"
  603. // [Jacobson et al 2012]
  604. //
  605. // Inputs:
  606. // V #V by dim list of rest positions
  607. // W #V+ by #T list of weights
  608. // Outputs:
  609. // M #V by #T*(dim+1)
  610. //
  611. // In MATLAB:
  612. // kron(ones(1,size(W,2)),[V ones(size(V,1),1)]).*kron(W,ones(1,size(V,2)+1)))igl_Qu8mg5v7";
  613. const char *__doc_igl_lbs_matrix_column = R"igl_Qu8mg5v7(// LBS_MATRIX construct a matrix that when multiplied against a column of
  614. // affine transformation entries computes new coordinates of the vertices
  615. //
  616. // I'm not sure it makes since that the result is stored as a sparse matrix.
  617. // The number of non-zeros per row *is* dependent on the number of mesh
  618. // vertices and handles.
  619. //
  620. // Inputs:
  621. // V #V by dim list of vertex rest positions
  622. // W #V by #handles list of correspondence weights
  623. // Output:
  624. // M #V * dim by #handles * dim * (dim+1) matrix such that
  625. // new_V(:) = LBS(V,W,A) = reshape(M * A,size(V)), where A is a column
  626. // vectors formed by the entries in each handle's dim by dim+1
  627. // transformation matrix. Specifcally, A =
  628. // reshape(permute(Astack,[3 1 2]),n*dim*(dim+1),1)
  629. // or A = [Lxx;Lyx;Lxy;Lyy;tx;ty], and likewise for other dim
  630. // if Astack(:,:,i) is the dim by (dim+1) transformation at handle i)igl_Qu8mg5v7";
  631. const char *__doc_igl_local_basis = R"igl_Qu8mg5v7(// Compute a local orthogonal reference system for each triangle in the given mesh
  632. // Templates:
  633. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  634. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  635. // Inputs:
  636. // V eigen matrix #V by 3
  637. // F #F by 3 list of mesh faces (must be triangles)
  638. // Outputs:
  639. // B1 eigen matrix #F by 3, each vector is tangent to the triangle
  640. // B2 eigen matrix #F by 3, each vector is tangent to the triangle and perpendicular to B1
  641. // B3 eigen matrix #F by 3, normal of the triangle
  642. //
  643. // See also: adjacency_matrix)igl_Qu8mg5v7";
  644. const char *__doc_igl_lscm = R"igl_Qu8mg5v7(// Compute a Least-squares conformal map parametrization (equivalently
  645. // derived in "Intrinsic Parameterizations of Surface Meshes" [Desbrun et al.
  646. // 2002] and "Least Squares Conformal Maps for Automatic Texture Atlas
  647. // Generation" [Lévy et al. 2002]), though this implementation follows the
  648. // derivation in: "Spectral Conformal Parameterization" [Mullen et al. 2008]
  649. // (note, this does **not** implement the Eigen-decomposition based method in
  650. // [Mullen et al. 2008], which is not equivalent). Input should be a manifold
  651. // mesh (also no unreferenced vertices) and "boundary" (fixed vertices) `b`
  652. // should contain at least two vertices per connected component.
  653. //
  654. // Inputs:
  655. // V #V by 3 list of mesh vertex positions
  656. // F #F by 3 list of mesh faces (must be triangles)
  657. // b #b boundary indices into V
  658. // bc #b by 3 list of boundary values
  659. // Outputs:
  660. // UV #V by 2 list of 2D mesh vertex positions in UV space
  661. // Returns true only on solver success.
  662. //)igl_Qu8mg5v7";
  663. const char *__doc_igl_map_vertices_to_circle = R"igl_Qu8mg5v7(// Map the vertices whose indices are in a given boundary loop (bnd) on the
  664. // unit circle with spacing proportional to the original boundary edge
  665. // lengths.
  666. //
  667. // Inputs:
  668. // V #V by dim list of mesh vertex positions
  669. // b #W list of vertex ids
  670. // Outputs:
  671. // UV #W by 2 list of 2D position on the unit circle for the vertices in b)igl_Qu8mg5v7";
  672. const char *__doc_igl_massmatrix = R"igl_Qu8mg5v7(// Constructs the mass (area) matrix for a given mesh (V,F).
  673. //
  674. // Templates:
  675. // DerivedV derived type of eigen matrix for V (e.g. derived from
  676. // MatrixXd)
  677. // DerivedF derived type of eigen matrix for F (e.g. derived from
  678. // MatrixXi)
  679. // Scalar scalar type for eigen sparse matrix (e.g. double)
  680. // Inputs:
  681. // V #V by dim list of mesh vertex positions
  682. // F #F by simplex_size list of mesh faces (must be triangles)
  683. // type one of the following ints:
  684. // MASSMATRIX_TYPE_BARYCENTRIC barycentric
  685. // MASSMATRIX_TYPE_VORONOI voronoi-hybrid {default}
  686. // MASSMATRIX_TYPE_FULL full {not implemented}
  687. // Outputs:
  688. // M #V by #V mass matrix
  689. //
  690. // See also: adjacency_matrix
  691. //)igl_Qu8mg5v7";
  692. const char *__doc_igl_min_quad_with_fixed_precompute = R"igl_Qu8mg5v7(// Known Bugs: rows of Aeq **should probably** be linearly independent.
  693. // During precomputation, the rows of a Aeq are checked via QR. But in case
  694. // they're not then resulting probably will no longer be sparse: it will be
  695. // slow.
  696. //
  697. // MIN_QUAD_WITH_FIXED Minimize quadratic energy
  698. //
  699. // 0.5*Z'*A*Z + Z'*B + C with
  700. //
  701. // constraints that Z(known) = Y, optionally also subject to the constraints
  702. // Aeq*Z = Beq
  703. //
  704. // Templates:
  705. // T should be a eigen matrix primitive type like int or double
  706. // Inputs:
  707. // A n by n matrix of quadratic coefficients
  708. // known list of indices to known rows in Z
  709. // Y list of fixed values corresponding to known rows in Z
  710. // Aeq m by n list of linear equality constraint coefficients
  711. // pd flag specifying whether A(unknown,unknown) is positive definite
  712. // Outputs:
  713. // data factorization struct with all necessary information to solve
  714. // using min_quad_with_fixed_solve
  715. // Returns true on success, false on error
  716. //
  717. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  718. // secs, igl/min_quad_with_fixed.h 7.1 secs
  719. //)igl_Qu8mg5v7";
  720. const char *__doc_igl_min_quad_with_fixed_solve = R"igl_Qu8mg5v7(// Solves a system previously factored using min_quad_with_fixed_precompute
  721. //
  722. // Template:
  723. // T type of sparse matrix (e.g. double)
  724. // DerivedY type of Y (e.g. derived from VectorXd or MatrixXd)
  725. // DerivedZ type of Z (e.g. derived from VectorXd or MatrixXd)
  726. // Inputs:
  727. // data factorization struct with all necessary precomputation to solve
  728. // B n by 1 column of linear coefficients
  729. // Y b by 1 list of constant fixed values
  730. // Beq m by 1 list of linear equality constraint constant values
  731. // Outputs:
  732. // Z n by cols solution
  733. // sol #unknowns+#lagrange by cols solution to linear system
  734. // Returns true on success, false on error)igl_Qu8mg5v7";
  735. const char *__doc_igl_min_quad_with_fixed = R"igl_Qu8mg5v7(See min_quad_with_fixed for the documentation.)igl_Qu8mg5v7";
  736. const char *__doc_igl_n_polyvector = R"igl_Qu8mg5v7(// Inputs:
  737. // v0, v1 the two #3 by 1 vectors
  738. // normalized boolean, if false, then the vectors are normalized prior to the calculation
  739. // Output:
  740. // 3 by 3 rotation matrix that takes v0 to v1
  741. //)igl_Qu8mg5v7";
  742. const char *__doc_igl_parula = R"igl_Qu8mg5v7(// PARULA like MATLAB's parula
  743. //
  744. // Inputs:
  745. // m number of colors
  746. // Outputs:
  747. // J m by list of RGB colors between 0 and 1
  748. //
  749. // Wrapper for directly computing [r,g,b] values for a given factor f between
  750. // 0 and 1
  751. //
  752. // Inputs:
  753. // f factor determining color value as if 0 was min and 1 was max
  754. // Outputs:
  755. // r red value
  756. // g green value
  757. // b blue value)igl_Qu8mg5v7";
  758. const char *__doc_igl_per_corner_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  759. // Inputs:
  760. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  761. // F #F by 3 eigne Matrix of face (triangle) indices
  762. // corner_threshold threshold in degrees on sharp angles
  763. // Output:
  764. // CN #F*3 by 3 eigen Matrix of mesh vertex 3D normals, where the normal
  765. // for corner F(i,j) is at CN(i*3+j,:) )igl_Qu8mg5v7";
  766. const char *__doc_igl_per_edge_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  767. // Inputs:
  768. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  769. // F #F by 3 eigen Matrix of face (triangle) indices
  770. // weight weighting type
  771. // FN #F by 3 matrix of 3D face normals per face
  772. // Output:
  773. // N #2 by 3 matrix of mesh edge 3D normals per row
  774. // E #E by 2 matrix of edge indices per row
  775. // EMAP #E by 1 matrix of indices from all edges to E
  776. //)igl_Qu8mg5v7";
  777. const char *__doc_igl_per_face_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  778. // Inputs:
  779. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  780. // F #F by 3 eigen Matrix of face (triangle) indices
  781. // Z 3 vector normal given to faces with degenerate normal.
  782. // Output:
  783. // N #F by 3 eigen Matrix of mesh face (triangle) 3D normals
  784. //
  785. // Example:
  786. // // Give degenerate faces (1/3,1/3,1/3)^0.5
  787. // per_face_normals(V,F,Vector3d(1,1,1).normalized(),N);)igl_Qu8mg5v7";
  788. const char *__doc_igl_per_face_normals_stable = R"igl_Qu8mg5v7(// Special version where order of face indices is guaranteed not to effect
  789. // output.)igl_Qu8mg5v7";
  790. const char *__doc_igl_per_vertex_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  791. // Inputs:
  792. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  793. // F #F by 3 eigne Matrix of face (triangle) indices
  794. // weighting Weighting type
  795. // Output:
  796. // N #V by 3 eigen Matrix of mesh vertex 3D normals)igl_Qu8mg5v7";
  797. const char *__doc_igl_planarize_quad_mesh = R"igl_Qu8mg5v7(// Inputs:
  798. // Vin #V by 3 eigen Matrix of mesh vertex 3D positions
  799. // F #F by 4 eigen Matrix of face (quad) indices
  800. // maxIter maximum numbers of iterations
  801. // threshold minimum allowed threshold for non-planarity
  802. // Output:
  803. // Vout #V by 3 eigen Matrix of planar mesh vertex 3D positions
  804. //)igl_Qu8mg5v7";
  805. const char *__doc_igl_png_readPNG = R"igl_Qu8mg5v7(// Read an image from a .png file into 4 memory buffers
  806. //
  807. // Input:
  808. // png_file path to .png file
  809. // Output:
  810. // R,G,B,A texture channels
  811. // Returns true on success, false on failure
  812. //)igl_Qu8mg5v7";
  813. const char *__doc_igl_png_writePNG = R"igl_Qu8mg5v7(// Writes an image to a png file
  814. //
  815. // Input:
  816. // R,G,B,A texture channels
  817. // Output:
  818. // png_file path to .png file
  819. // Returns true on success, false on failure
  820. //)igl_Qu8mg5v7";
  821. const char *__doc_igl_point_mesh_squared_distance = R"igl_Qu8mg5v7(// Compute distances from a set of points P to a triangle mesh (V,F)
  822. //
  823. // Inputs:
  824. // P #P by 3 list of query point positions
  825. // V #V by 3 list of vertex positions
  826. // Ele #Ele by (3|2|1) list of (triangle|edge|point) indices
  827. // Outputs:
  828. // sqrD #P list of smallest squared distances
  829. // I #P list of primitive indices corresponding to smallest distances
  830. // C #P by 3 list of closest points
  831. //
  832. // Known bugs: This only computes distances to given primitivess. So
  833. // unreferenced vertices are ignored. However, degenerate primitives are
  834. // handled correctly: triangle [1 2 2] is treated as a segment [1 2], and
  835. // triangle [1 1 1] is treated as a point. So one _could_ add extra
  836. // combinatorially degenerate rows to Ele for all unreferenced vertices to
  837. // also get distances to points.)igl_Qu8mg5v7";
  838. const char *__doc_igl_polar_svd = R"igl_Qu8mg5v7(// Computes the polar decomposition (R,T) of a matrix A using SVD singular
  839. // value decomposition
  840. //
  841. // Inputs:
  842. // A 3 by 3 matrix to be decomposed
  843. // Outputs:
  844. // R 3 by 3 rotation matrix part of decomposition (**always rotataion**)
  845. // T 3 by 3 stretch matrix part of decomposition
  846. // U 3 by 3 left-singular vectors
  847. // S 3 by 1 singular values
  848. // V 3 by 3 right-singular vectors
  849. //
  850. //)igl_Qu8mg5v7";
  851. const char *__doc_igl_principal_curvature = R"igl_Qu8mg5v7(// Compute the principal curvature directions and magnitude of the given triangle mesh
  852. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  853. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  854. // Inputs:
  855. // V eigen matrix #V by 3
  856. // F #F by 3 list of mesh faces (must be triangles)
  857. // radius controls the size of the neighbourhood used, 1 = average edge lenght
  858. //
  859. // Outputs:
  860. // PD1 #V by 3 maximal curvature direction for each vertex.
  861. // PD2 #V by 3 minimal curvature direction for each vertex.
  862. // PV1 #V by 1 maximal curvature value for each vertex.
  863. // PV2 #V by 1 minimal curvature value for each vertex.
  864. //
  865. // See also: average_onto_faces, average_onto_vertices
  866. //
  867. // This function has been developed by: Nikolas De Giorgis, Luigi Rocca and Enrico Puppo.
  868. // The algorithm is based on:
  869. // Efficient Multi-scale Curvature and Crease Estimation
  870. // Daniele Panozzo, Enrico Puppo, Luigi Rocca
  871. // GraVisMa, 2010)igl_Qu8mg5v7";
  872. const char *__doc_igl_quad_planarity = R"igl_Qu8mg5v7(// Compute planarity of the faces of a quad mesh
  873. // Inputs:
  874. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  875. // F #F by 4 eigen Matrix of face (quad) indices
  876. // Output:
  877. // P #F by 1 eigen Matrix of mesh face (quad) planarities
  878. //)igl_Qu8mg5v7";
  879. const char *__doc_igl_randperm = R"igl_Qu8mg5v7(// Like matlab's randperm(n) but minus 1
  880. //
  881. // Inputs:
  882. // n number of elements
  883. // Outputs:
  884. // I n list of rand permutation of 0:n-1)igl_Qu8mg5v7";
  885. const char *__doc_igl_readDMAT = R"igl_Qu8mg5v7(See readDMAT for the documentation.)igl_Qu8mg5v7";
  886. const char *__doc_igl_readMESH = R"igl_Qu8mg5v7(// load a tetrahedral volume mesh from a .mesh file
  887. //
  888. // Templates:
  889. // Scalar type for positions and vectors (will be read as double and cast
  890. // to Scalar)
  891. // Index type for indices (will be read as int and cast to Index)
  892. // Input:
  893. // mesh_file_name path of .mesh file
  894. // Outputs:
  895. // V double matrix of vertex positions #V by 3
  896. // T #T list of tet indices into vertex positions
  897. // F #F list of face indices into vertex positions
  898. //
  899. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  900. const char *__doc_igl_readOBJ = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  901. // and texture coordinates. Mesh may have faces of any number of degree
  902. //
  903. // Templates:
  904. // Scalar type for positions and vectors (will be read as double and cast
  905. // to Scalar)
  906. // Index type for indices (will be read as int and cast to Index)
  907. // Inputs:
  908. // str path to .obj file
  909. // Outputs:
  910. // V double matrix of vertex positions #V by 3
  911. // TC double matrix of texture coordinats #TC by 2
  912. // N double matrix of corner normals #N by 3
  913. // F #F list of face indices into vertex positions
  914. // FTC #F list of face indices into vertex texture coordinates
  915. // FN #F list of face indices into vertex normals
  916. // Returns true on success, false on errors)igl_Qu8mg5v7";
  917. const char *__doc_igl_readOFF = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  918. // and texture coordinates. Mesh may have faces of any number of degree
  919. //
  920. // Templates:
  921. // Scalar type for positions and vectors (will be read as double and cast
  922. // to Scalar)
  923. // Index type for indices (will be read as int and cast to Index)
  924. // Inputs:
  925. // str path to .obj file
  926. // Outputs:
  927. // V double matrix of vertex positions #V by 3
  928. // F #F list of face indices into vertex positions
  929. // TC double matrix of texture coordinats #TC by 2
  930. // FTC #F list of face indices into vertex texture coordinates
  931. // N double matrix of corner normals #N by 3
  932. // FN #F list of face indices into vertex normals
  933. // Returns true on success, false on errors)igl_Qu8mg5v7";
  934. const char *__doc_igl_readTGF = R"igl_Qu8mg5v7(// READTGF
  935. //
  936. // [V,E,P,BE,CE,PE] = readTGF(filename)
  937. //
  938. // Read a graph from a .tgf file
  939. //
  940. // Input:
  941. // filename .tgf file name
  942. // Ouput:
  943. // V # vertices by 3 list of vertex positions
  944. // E # edges by 2 list of edge indices
  945. // P # point-handles list of point handle indices
  946. // BE # bone-edges by 2 list of bone-edge indices
  947. // CE # cage-edges by 2 list of cage-edge indices
  948. // PE # pseudo-edges by 2 list of pseudo-edge indices
  949. //
  950. // Assumes that graph vertices are 3 dimensional)igl_Qu8mg5v7";
  951. const char *__doc_igl_read_triangle_mesh = R"igl_Qu8mg5v7(// read mesh from an ascii file with automatic detection of file format.
  952. // supported: obj, off, stl, wrl, ply, mesh)
  953. //
  954. // Templates:
  955. // Scalar type for positions and vectors (will be read as double and cast
  956. // to Scalar)
  957. // Index type for indices (will be read as int and cast to Index)
  958. // Inputs:
  959. // str path to file
  960. // Outputs:
  961. // V eigen double matrix #V by 3
  962. // F eigen int matrix #F by 3
  963. // Returns true iff success)igl_Qu8mg5v7";
  964. const char *__doc_igl_rotate_vectors = R"igl_Qu8mg5v7(// Rotate the vectors V by A radiants on the tangent plane spanned by B1 and
  965. // B2
  966. //
  967. // Inputs:
  968. // V #V by 3 eigen Matrix of vectors
  969. // A #V eigen vector of rotation angles or a single angle to be applied
  970. // to all vectors
  971. // B1 #V by 3 eigen Matrix of base vector 1
  972. // B2 #V by 3 eigen Matrix of base vector 2
  973. //
  974. // Output:
  975. // Returns the rotated vectors
  976. //)igl_Qu8mg5v7";
  977. const char *__doc_igl_setdiff = R"igl_Qu8mg5v7(// Set difference of elements of matrices
  978. //
  979. // Inputs:
  980. // A m-long vector of indices
  981. // B n-long vector of indices
  982. // Outputs:
  983. // C (k<=m)-long vector of unique elements appearing in A but not in B
  984. // IA (k<=m)-long list of indices into A so that C = A(IA)
  985. //)igl_Qu8mg5v7";
  986. const char *__doc_igl_signed_distance = R"igl_Qu8mg5v7(// Computes signed distance to a mesh
  987. //
  988. // Inputs:
  989. // P #P by 3 list of query point positions
  990. // V #V by 3 list of vertex positions
  991. // F #F by ss list of triangle indices, ss should be 3 unless sign_type ==
  992. // SIGNED_DISTANCE_TYPE_UNSIGNED
  993. // sign_type method for computing distance _sign_ S
  994. // Outputs:
  995. // S #P list of smallest signed distances
  996. // I #P list of facet indices corresponding to smallest distances
  997. // C #P by 3 list of closest points
  998. // N #P by 3 list of closest normals (only set if
  999. // sign_type=SIGNED_DISTANCE_TYPE_PSEUDONORMAL)
  1000. //
  1001. // Known bugs: This only computes distances to triangles. So unreferenced
  1002. // vertices and degenerate triangles are ignored.)igl_Qu8mg5v7";
  1003. const char *__doc_igl_signed_distance_pseudonormal = R"igl_Qu8mg5v7(// Computes signed distance to mesh
  1004. //
  1005. // Inputs:
  1006. // tree AABB acceleration tree (see AABB.h)
  1007. // F #F by 3 list of triangle indices
  1008. // FN #F by 3 list of triangle normals
  1009. // VN #V by 3 list of vertex normals (ANGLE WEIGHTING)
  1010. // EN #E by 3 list of edge normals (UNIFORM WEIGHTING)
  1011. // EMAP #F*3 mapping edges in F to E
  1012. // q Query point
  1013. // Returns signed distance to mesh
  1014. //)igl_Qu8mg5v7";
  1015. const char *__doc_igl_signed_distance_winding_number = R"igl_Qu8mg5v7(// Inputs:
  1016. // tree AABB acceleration tree (see cgal/point_mesh_squared_distance.h)
  1017. // hier Winding number evaluation hierarchy
  1018. // q Query point
  1019. // Returns signed distance to mesh)igl_Qu8mg5v7";
  1020. const char *__doc_igl_slice = R"igl_Qu8mg5v7(// Act like the matlab X(row_indices,col_indices) operator, where
  1021. // row_indices, col_indices are non-negative integer indices.
  1022. //
  1023. // Inputs:
  1024. // X m by n matrix
  1025. // R list of row indices
  1026. // C list of column indices
  1027. // Output:
  1028. // Y #R by #C matrix
  1029. //
  1030. // See also: slice_mask)igl_Qu8mg5v7";
  1031. const char *__doc_igl_slice_into = R"igl_Qu8mg5v7(// Act like the matlab Y(row_indices,col_indices) = X
  1032. //
  1033. // Inputs:
  1034. // X xm by xn rhs matrix
  1035. // R list of row indices
  1036. // C list of column indices
  1037. // Y ym by yn lhs matrix
  1038. // Output:
  1039. // Y ym by yn lhs matrix, same as input but Y(R,C) = X)igl_Qu8mg5v7";
  1040. const char *__doc_igl_slice_mask = R"igl_Qu8mg5v7(// Act like the matlab X(row_mask,col_mask) operator, where
  1041. // row_mask, col_mask are non-negative integer indices.
  1042. //
  1043. // Inputs:
  1044. // X m by n matrix
  1045. // R m list of row bools
  1046. // C n list of column bools
  1047. // Output:
  1048. // Y #trues-in-R by #trues-in-C matrix
  1049. //
  1050. // See also: slice_mask)igl_Qu8mg5v7";
  1051. const char *__doc_igl_slice_tets = R"igl_Qu8mg5v7(// SLICE_TETS Slice through a tet mesh (V,T) along a given plane (via its
  1052. // implicit equation).
  1053. //
  1054. // Inputs:
  1055. // V #V by 3 list of tet mesh vertices
  1056. // T #T by 4 list of tet indices into V
  1057. // plane list of 4 coefficients in the plane equation: [x y z 1]'*plane = 0
  1058. // Optional:
  1059. // 'Manifold' followed by whether to stitch together triangles into a
  1060. // manifold mesh {true}: results in more compact U but slightly slower.
  1061. // Outputs:
  1062. // U #U by 3 list of triangle mesh vertices along slice
  1063. // G #G by 3 list of triangles indices into U
  1064. // J #G list of indices into T revealing from which tet each faces comes
  1065. // BC #U by #V list of barycentric coordinates (or more generally: linear
  1066. // interpolation coordinates) so that U = BC*V
  1067. // )igl_Qu8mg5v7";
  1068. const char *__doc_igl_sortrows = R"igl_Qu8mg5v7(// Act like matlab's [Y,I] = sortrows(X)
  1069. //
  1070. // Templates:
  1071. // DerivedX derived scalar type, e.g. MatrixXi or MatrixXd
  1072. // DerivedI derived integer type, e.g. MatrixXi
  1073. // Inputs:
  1074. // X m by n matrix whose entries are to be sorted
  1075. // ascending sort ascending (true, matlab default) or descending (false)
  1076. // Outputs:
  1077. // Y m by n matrix whose entries are sorted (**should not** be same
  1078. // reference as X)
  1079. // I m list of indices so that
  1080. // Y = X(I,:);)igl_Qu8mg5v7";
  1081. const char *__doc_igl_triangle_triangulate = R"igl_Qu8mg5v7(// Triangulate the interior of a polygon using the triangle library.
  1082. //
  1083. // Inputs:
  1084. // V #V by 2 list of 2D vertex positions
  1085. // E #E by 2 list of vertex ids forming unoriented edges of the boundary of the polygon
  1086. // H #H by 2 coordinates of points contained inside holes of the polygon
  1087. // flags string of options pass to triangle (see triangle documentation)
  1088. // Outputs:
  1089. // V2 #V2 by 2 coordinates of the vertives of the generated triangulation
  1090. // F2 #F2 by 3 list of indices forming the faces of the generated triangulation
  1091. //
  1092. // TODO: expose the option to prevent Steiner points on the boundary
  1093. //)igl_Qu8mg5v7";
  1094. const char *__doc_igl_unique = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X)
  1095. //
  1096. // Templates:
  1097. // T comparable type T
  1098. // Inputs:
  1099. // A #A vector of type T
  1100. // Outputs:
  1101. // C #C vector of unique entries in A
  1102. // IA #C index vector so that C = A(IA);
  1103. // IC #A index vector so that A = C(IC);)igl_Qu8mg5v7";
  1104. const char *__doc_igl_unique_rows = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X,'rows')
  1105. //
  1106. // Templates:
  1107. // DerivedA derived scalar type, e.g. MatrixXi or MatrixXd
  1108. // DerivedIA derived integer type, e.g. MatrixXi
  1109. // DerivedIC derived integer type, e.g. MatrixXi
  1110. // Inputs:
  1111. // A m by n matrix whose entries are to unique'd according to rows
  1112. // Outputs:
  1113. // C #C vector of unique rows in A
  1114. // IA #C index vector so that C = A(IA,:);
  1115. // IC #A index vector so that A = C(IC,:);)igl_Qu8mg5v7";
  1116. const char *__doc_igl_unproject_onto_mesh = R"igl_Qu8mg5v7(// Unproject a screen location (using current opengl viewport, projection, and
  1117. // model view) to a 3D position _onto_ a given mesh, if the ray through the
  1118. // given screen location (x,y) _hits_ the mesh.
  1119. //
  1120. // Inputs:
  1121. // pos screen space coordinates
  1122. // model model matrix
  1123. // proj projection matrix
  1124. // viewport vieweport vector
  1125. // V #V by 3 list of mesh vertex positions
  1126. // F #F by 3 list of mesh triangle indices into V
  1127. // Outputs:
  1128. // fid id of the first face hit
  1129. // bc barycentric coordinates of hit
  1130. // Returns true if there's a hit)igl_Qu8mg5v7";
  1131. const char *__doc_igl_upsample = R"igl_Qu8mg5v7(// Subdivide a mesh without moving vertices: loop subdivision but odd
  1132. // vertices stay put and even vertices are just edge midpoints
  1133. //
  1134. // Templates:
  1135. // MatV matrix for vertex positions, e.g. MatrixXd
  1136. // MatF matrix for vertex positions, e.g. MatrixXi
  1137. // Inputs:
  1138. // V #V by dim mesh vertices
  1139. // F #F by 3 mesh triangles
  1140. // Outputs:
  1141. // NV new vertex positions, V is guaranteed to be at top
  1142. // NF new list of face indices
  1143. //
  1144. // NOTE: V should not be the same as NV,
  1145. // NOTE: F should not be the same as NF, use other proto
  1146. //
  1147. // Known issues:
  1148. // - assumes (V,F) is edge-manifold.)igl_Qu8mg5v7";
  1149. const char *__doc_igl_winding_number = R"igl_Qu8mg5v7(// WINDING_NUMBER Compute the sum of solid angles of a triangle/tetrahedron
  1150. // described by points (vectors) V
  1151. //
  1152. // Templates:
  1153. // dim dimension of input
  1154. // Inputs:
  1155. // V n by 3 list of vertex positions
  1156. // F #F by 3 list of triangle indices, minimum index is 0
  1157. // O no by 3 list of origin positions
  1158. // Outputs:
  1159. // S no by 1 list of winding numbers
  1160. //
  1161. // 3d)igl_Qu8mg5v7";
  1162. const char *__doc_igl_winding_number_3 = R"igl_Qu8mg5v7(// Inputs:
  1163. // V pointer to array containing #V by 3 vertex positions along rows,
  1164. // given in column major order
  1165. // n number of mesh vertices
  1166. // F pointer to array containing #F by 3 face indices along rows,
  1167. // given in column major order
  1168. // m number of faces
  1169. // O pointer to array containing #O by 3 query positions along rows,
  1170. // given in column major order
  1171. // no number of origins
  1172. // Outputs:
  1173. // S no by 1 list of winding numbers)igl_Qu8mg5v7";
  1174. const char *__doc_igl_winding_number_2 = R"igl_Qu8mg5v7(//// Only one evaluation origin
  1175. //template <typename DerivedF>
  1176. //IGL_INLINE void winding_number_3(
  1177. // const double * V,
  1178. // const int n,
  1179. // const DerivedF * F,
  1180. // const int m,
  1181. // const double * O,
  1182. // double * S);
  1183. // 2d)igl_Qu8mg5v7";
  1184. const char *__doc_igl_writeMESH = R"igl_Qu8mg5v7(// save a tetrahedral volume mesh to a .mesh file
  1185. //
  1186. // Templates:
  1187. // Scalar type for positions and vectors (will be cast as double)
  1188. // Index type for indices (will be cast to int)
  1189. // Input:
  1190. // mesh_file_name path of .mesh file
  1191. // V double matrix of vertex positions #V by 3
  1192. // T #T list of tet indices into vertex positions
  1193. // F #F list of face indices into vertex positions
  1194. //
  1195. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  1196. const char *__doc_igl_writeOBJ = R"igl_Qu8mg5v7(// Write a mesh in an ascii obj file
  1197. // Inputs:
  1198. // str path to outputfile
  1199. // V #V by 3 mesh vertex positions
  1200. // F #F by 3|4 mesh indices into V
  1201. // CN #CN by 3 normal vectors
  1202. // FN #F by 3|4 corner normal indices into CN
  1203. // TC #TC by 2|3 texture coordinates
  1204. // FTC #F by 3|4 corner texture coord indices into TC
  1205. // Returns true on success, false on error)igl_Qu8mg5v7";