123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- #include "build_octree.h"
- #include <vector>
- #include <queue>
- const int MAX_DEPTH = 1000;
- int get_octant(const Eigen::RowVector3d & location, const Eigen::RowVector3d & center){
- //Binary numbering of children:
- //if we treat location as the origin,
- //first bit is 1 if x is positive, 0 if not
- //second bit is 1 if y is positive, 0 if not
- //third bit is 1 if z is positive, 0 if not
- //for example, the quadrant with negative x, positive y, positive z is:
- //110 binary = 6 decimal
- int index = 0;
- if( location(0) >= center(0)){
- index = index + 1;
- }
- if( location(1) >= center(1)){
- index = index + 2;
- }
- if( location(2) >= center(2)){
- index = index + 4;
- }
- return index;
- }
- Eigen::RowVector3d translate_center(const Eigen::RowVector3d & parent_center, double h, int child_index){
- Eigen::RowVector3d change_vector;
- change_vector << h,h,h;
- if(child_index % 2){ //positive x chilren are 1,3,4,7
- change_vector(0) = -h;
- }
- if(child_index == 2 || child_index == 3 ||
- child_index == 6 || child_index == 7){ //positive y children are 2,3,6,7
- change_vector(1) = -h;
- }
- if(child_index > 3){ //positive z children are 4,5,6,7
- change_vector(2) = -h;
- }
- return parent_center - change_vector;
- }
- void build_octree(const Eigen::MatrixXd & P,
- std::vector<std::vector<int> > & point_indices,
- std::vector<Eigen::Matrix<int,8,1>, Eigen::aligned_allocator<Eigen::Matrix<int,8,1>>> & children,
- std::vector<Eigen::RowVector3d, Eigen::aligned_allocator<Eigen::RowVector3d>> & centers,
- std::vector<double> & widths
- ){
- typedef Eigen::Matrix<int,8,1> Vector8i;
- typedef Eigen::Matrix<double,8,1> Vector8d;
- // How many cells do we have so far?
- int m = 0;
-
- // Useful list of number 0..7
- const Vector8i zero_to_seven = (Vector8i()<<0,1,2,3,4,5,6,7).finished();
- const Vector8i neg_ones = (Vector8i()<<-1,-1,-1,-1,-1,-1,-1,-1).finished();
-
- // This function variable needs to be declared before it is defined so that
- // you can capture it and call it recursively. Annoyingly this means you need
- // to fill in the function prototype here, too.
- std::function< void(const int, const int) > helper;
- helper = [
- // These variables from the parent scope are "captured" you can read and
- // write to them
- &helper,
- &zero_to_seven,&neg_ones,&P,&point_indices,&children,¢ers,&widths,&m]
- // The "-> bool" means that this function will return bool (I don't think
- // you need this, but in case you do.)
- (const int index, const int depth)-> void
- {
- if(point_indices.at(index).size() > 1 && depth < MAX_DEPTH){
- //give the parent access to the children
- children.at(index) = zero_to_seven.array() + m;
- //make the children's data in our arrays
-
- //Add the children to the lists, as default children
- double h = widths.at(index)/2;
- Eigen::RowVector3d curr_center = centers.at(index);
- for(int i = 0; i < 8; i++){
- children.emplace_back(-1 * Eigen::MatrixXi::Ones(8,1));
- point_indices.emplace_back(std::vector<int>());
- centers.emplace_back(translate_center(curr_center,h,i));
- widths.emplace_back(h);
- }
-
- //Split up the points into the corresponding children
- for(int j = 0; j < point_indices.at(index).size(); j++){
- int curr_point_index = point_indices.at(index).at(j);
- int cell_of_curr_point = get_octant(P.row(curr_point_index),curr_center)+m;
- point_indices.at(cell_of_curr_point).emplace_back(curr_point_index);
- }
-
- //Now increase m
- m += 8;
-
- // Look ma, I'm calling myself.
- for(int i = 0; i < 8; i++){
- helper(children.at(index)(i),depth+1);
- }
- }
- };
-
- {
- std::vector<int> all(P.rows());
- for(int i = 0;i<all.size();i++) all[i]=i;
- point_indices.emplace_back(all);
- }
- children.emplace_back(-1 * Eigen::MatrixXi::Ones(8,1));
-
- //Get the minimum AABB for the points
- Eigen::RowVector3d backleftbottom(P.col(0).minCoeff(),P.col(1).minCoeff(),P.col(2).minCoeff());
- Eigen::RowVector3d frontrighttop(P.col(0).maxCoeff(),P.col(1).maxCoeff(),P.col(2).maxCoeff());
- Eigen::RowVector3d aabb_center = (backleftbottom+frontrighttop)/2.0;
- double aabb_width = std::max(std::max(frontrighttop(0) - backleftbottom(0),
- frontrighttop(1) - backleftbottom(1)),
- frontrighttop(2) - backleftbottom(2));
- centers.emplace_back( aabb_center );
- widths.emplace_back( aabb_width ); //Widths are the side length of the cube, (not half the side length)
- m++;
- // then you have to actually call the function
- helper(0,0);
-
- assert(point_indices.size() == m);
- assert(children.size() == m);
- assert(centers.size() == m);
- assert(widths.size() == m);
- }
- //}
- //#ifndef IGL_STATIC_LIBRARY
- //# include "point_areas_and_normals.cpp"
- //#endif
- //#endif
|