123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "arap.h"
- #include <igl/colon.h>
- #include <igl/cotmatrix.h>
- #include <igl/group_sum_matrix.h>
- #include <igl/covariance_scatter_matrix.h>
- #include <igl/speye.h>
- #include <igl/mode.h>
- #include <igl/slice.h>
- #include <igl/arap_rhs.h>
- #include <igl/repdiag.h>
- #include <igl/columnize.h>
- #include "fit_rotations.h"
- #include <cassert>
- #include <iostream>
- template <
- typename DerivedV,
- typename DerivedF,
- typename Derivedb>
- IGL_INLINE bool igl::arap_precomputation(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::PlainObjectBase<DerivedF> & F,
- const Eigen::PlainObjectBase<Derivedb> & b,
- ARAPData & data)
- {
- using namespace igl;
- using namespace Eigen;
- typedef typename DerivedV::Scalar Scalar;
- // number of vertices
- const int n = V.rows();
- data.n = n;
- assert((b.size() == 0 || b.maxCoeff() < n) && "b out of bounds");
- assert((b.size() == 0 || b.minCoeff() >=0) && "b out of bounds");
- // remember b
- data.b = b;
- assert(F.cols() == 3 && "For now only triangles");
- // dimension
- const int dim = V.cols();
- assert(dim == 3 && "Only 3d supported");
- // Defaults
- data.f_ext = Eigen::MatrixXd::Zero(n,dim);
- SparseMatrix<Scalar> L;
- cotmatrix(V,F,L);
- ARAPEnergyType eff_energy = data.energy;
- if(eff_energy == ARAP_ENERGY_TYPE_DEFAULT)
- {
- switch(F.cols())
- {
- case 3:
- if(dim == 3)
- {
- eff_energy = ARAP_ENERGY_TYPE_SPOKES_AND_RIMS;
- }else
- {
- eff_energy = ARAP_ENERGY_TYPE_ELEMENTS;
- }
- break;
- case 4:
- eff_energy = ARAP_ENERGY_TYPE_ELEMENTS;
- default:
- assert(false);
- }
- }
- // Get covariance scatter matrix, when applied collects the covariance matrices
- // used to fit rotations to during optimization
- covariance_scatter_matrix(V,F,eff_energy,data.CSM);
- // Get group sum scatter matrix, when applied sums all entries of the same
- // group according to G
- SparseMatrix<double> G_sum;
- if(data.G.size() == 0)
- {
- speye(n,G_sum);
- }else
- {
- // groups are defined per vertex, convert to per face using mode
- Eigen::Matrix<int,Eigen::Dynamic,1> GG;
- if(eff_energy == ARAP_ENERGY_TYPE_ELEMENTS)
- {
- MatrixXi GF(F.rows(),F.cols());
- for(int j = 0;j<F.cols();j++)
- {
- Matrix<int,Eigen::Dynamic,1> GFj;
- slice(data.G,F.col(j),GFj);
- GF.col(j) = GFj;
- }
- mode<int>(GF,2,GG);
- }else
- {
- GG=data.G;
- }
- //printf("group_sum_matrix()\n");
- group_sum_matrix(GG,G_sum);
- }
- SparseMatrix<double> G_sum_dim;
- repdiag(G_sum,dim,G_sum_dim);
- data.CSM = (G_sum_dim * data.CSM).eval();
- arap_rhs(V,F,eff_energy,data.K);
- SparseMatrix<double> Q = (-0.5*L).eval();
- return min_quad_with_fixed_precompute(
- Q,b,SparseMatrix<double>(),true,data.solver_data);
- }
- template <
- typename Derivedbc,
- typename DerivedU>
- IGL_INLINE bool igl::arap_solve(
- const Eigen::PlainObjectBase<Derivedbc> & bc,
- ARAPData & data,
- Eigen::PlainObjectBase<DerivedU> & U)
- {
- using namespace igl;
- using namespace Eigen;
- using namespace std;
- assert(data.b.size() == bc.rows());
- const int dim = bc.cols();
- const int n = data.n;
- int iter = 0;
- if(U.size() == 0)
- {
- // terrible initial guess.. should at least copy input mesh
- U = MatrixXd::Zero(data.n,dim);
- }
- MatrixXd U_prev = U;
- while(iter < data.max_iter)
- {
- U_prev = U;
- // enforce boundary conditions exactly
- for(int bi = 0;bi<bc.rows();bi++)
- {
- U.row(data.b(bi)) = bc.row(bi);
- }
- MatrixXd S = data.CSM * U.replicate(dim,1);
- MatrixXd R(dim,data.CSM.rows());
- #ifdef __SSE__ // fit_rotations_SSE will convert to float if necessary
- fit_rotations_SSE(S,R);
- #else
- fit_rotations(S,R);
- #endif
- //for(int k = 0;k<(data.CSM.rows()/dim);k++)
- //{
- // R.block(0,dim*k,dim,dim) = MatrixXd::Identity(dim,dim);
- //}
- // distribute group rotations to vertices in each group
- MatrixXd eff_R;
- if(data.G.size() == 0)
- {
- // copy...
- eff_R = R;
- }else
- {
- eff_R.resize(dim,dim*n);
- for(int v = 0;v<n;v++)
- {
- eff_R.block(0,dim*v,dim,dim) =
- R.block(0,dim*data.G(v),dim,dim);
- }
- }
- VectorXd Rcol;
- columnize(eff_R,n,2,Rcol);
- VectorXd Bcol = -data.K * Rcol;
- for(int c = 0;c<dim;c++)
- {
- VectorXd Uc,Bc,bcc,Beq;
- Bc = Bcol.block(c*n,0,n,1);
- bcc = bc.col(c);
- min_quad_with_fixed_solve(
- data.solver_data,
- Bc,bcc,Beq,
- Uc);
- U.col(c) = Uc;
- }
-
- iter++;
- }
- return true;
- }
- #ifndef IGL_HEADER_ONLY
- template bool igl::arap_precomputation<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, igl::ARAPData&);
- template bool igl::arap_solve<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, igl::ARAPData&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
- #endif
|