min_quad_dense.h 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105
  1. #ifndef IGL_MIN_QUAD_DENSE_H
  2. #define IGL_MIN_QUAD_DENSE_H
  3. #include <Eigen/Core>
  4. #include <Eigen/Dense>
  5. #include <Eigen/LU>
  6. //// debug
  7. //#include <matlabinterface.h>
  8. //Engine *g_pEngine;
  9. #include <EPS.h>
  10. namespace igl
  11. {
  12. // MIN_QUAD_WITH_FIXED Minimize quadratic energy Z'*A*Z + Z'*B + C
  13. // subject to linear constraints Aeq*Z = Beq
  14. //
  15. // Templates:
  16. // T should be a eigen matrix primitive type like float or double
  17. // Inputs:
  18. // A n by n matrix of quadratic coefficients
  19. // B n by 1 column of linear coefficients
  20. // Aeq m by n list of linear equality constraint coefficients
  21. // Beq m by 1 list of linear equality constraint constant values
  22. // Outputs:
  23. // S n by (n + m) "solve" matrix, such that S*[B', Beq'] is a solution
  24. // Returns true on success, false on error
  25. template <typename T>
  26. void min_quad_dense_precompute(
  27. const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& A,
  28. const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& Aeq,
  29. Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& S)
  30. {
  31. typedef Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> Mat;
  32. // This threshold seems to matter a lot but I'm not sure how to
  33. // set it
  34. const T treshold = igl::FLOAT_EPS;
  35. //const T treshold = igl::DOUBLE_EPS;
  36. const int n = A.rows();
  37. assert(A.cols() == n);
  38. const int m = Aeq.rows();
  39. assert(Aeq.cols() == n);
  40. // Lagrange multipliers method:
  41. Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> LM(n + m, n + m);
  42. LM.block(0, 0, n, n) = A;
  43. LM.block(0, n, n, m) = Aeq.transpose();
  44. LM.block(n, 0, m, n) = Aeq;
  45. LM.block(n, n, m, m).setZero();
  46. //#define USE_LU_DECOMPOSITION
  47. #ifdef USE_LU_DECOMPOSITION
  48. // if LM is close to singular, use at your own risk :)
  49. Mat LMpinv = LM.inverse();
  50. #else // use SVD
  51. typedef Eigen::Matrix<T, Eigen::Dynamic, 1> Vec;
  52. Vec singValues;
  53. Eigen::JacobiSVD<Mat> svd;
  54. svd.compute(LM, Eigen::ComputeFullU | Eigen::ComputeFullV );
  55. const Mat& u = svd.matrixU();
  56. const Mat& v = svd.matrixV();
  57. const Vec& singVals = svd.singularValues();
  58. Vec pi_singVals(n + m);
  59. int zeroed = 0;
  60. for (int i=0; i<n + m; i++)
  61. {
  62. T sv = singVals(i, 0);
  63. assert(sv >= 0);
  64. // printf("sv: %lg ? %lg\n",(double) sv,(double)treshold);
  65. if (sv > treshold) pi_singVals(i, 0) = T(1) / sv;
  66. else
  67. {
  68. pi_singVals(i, 0) = T(0);
  69. zeroed++;
  70. }
  71. }
  72. printf("min_quad_dense_precompute: %i singular values zeroed (threshold = %e)\n", zeroed, treshold);
  73. Eigen::DiagonalMatrix<T, Eigen::Dynamic> pi_diag(pi_singVals);
  74. Mat LMpinv = v * pi_diag * u.transpose();
  75. #endif
  76. S = LMpinv.block(0, 0, n, n + m);
  77. //// debug:
  78. //mlinit(&g_pEngine);
  79. //
  80. //mlsetmatrix(&g_pEngine, "A", A);
  81. //mlsetmatrix(&g_pEngine, "Aeq", Aeq);
  82. //mlsetmatrix(&g_pEngine, "LM", LM);
  83. //mlsetmatrix(&g_pEngine, "u", u);
  84. //mlsetmatrix(&g_pEngine, "v", v);
  85. //MatrixXd svMat = singVals;
  86. //mlsetmatrix(&g_pEngine, "singVals", svMat);
  87. //mlsetmatrix(&g_pEngine, "LMpinv", LMpinv);
  88. //mlsetmatrix(&g_pEngine, "S", S);
  89. //int hu = 1;
  90. }
  91. }
  92. #endif