12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2014 Alec Jacobson <alecjacobson@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "dihedral_angles.h"
- #include <cassert>
- template <
- typename DerivedV,
- typename DerivedT,
- typename Derivedtheta,
- typename Derivedcos_theta>
- IGL_INLINE void igl::dihedral_angles(
- Eigen::PlainObjectBase<DerivedV>& V,
- Eigen::PlainObjectBase<DerivedT>& T,
- Eigen::PlainObjectBase<Derivedtheta>& theta,
- Eigen::PlainObjectBase<Derivedcos_theta>& cos_theta)
- {
- using namespace Eigen;
- assert(T.cols() == 4);
- Matrix<typename Derivedtheta::Scalar,Dynamic,6> l;
- edge_lengths(V,T,l);
- Matrix<typename Derivedtheta::Scalar,Dynamic,4> s;
- face_areas(l,s);
- return dihedral_angles_intrinsic(l,s,theta,cos_theta);
- }
- template <
- typename DerivedL,
- typename DerivedA,
- typename Derivedtheta,
- typename Derivedcos_theta>
- IGL_INLINE void igl::dihedral_angles_intrinsic(
- Eigen::PlainObjectBase<DerivedL>& L,
- Eigen::PlainObjectBase<DerivedA>& A,
- Eigen::PlainObjectBase<Derivedtheta>& theta,
- Eigen::PlainObjectBase<Derivedcos_theta>& cos_theta)
- {
- using namespace Eigen;
- const int m = L.rows();
- assert(m == A.rows());
- // Law of cosines
- // http://math.stackexchange.com/a/49340/35376
- Matrix<typename Derivedtheta::Scalar,Dynamic,6> H_sqr(m,6);
- H_sqr.col(0) = (1./16.) * (4. * L.col(3).array().square() * L.col(0).array().square() -
- ((L.col(1).array().square() + L.col(4).array().square()) -
- (L.col(2).array().square() + L.col(5).array().square())).square());
- H_sqr.col(1) = (1./16.) * (4. * L.col(4).array().square() * L.col(1).array().square() -
- ((L.col(2).array().square() + L.col(5).array().square()) -
- (L.col(3).array().square() + L.col(0).array().square())).square());
- H_sqr.col(2) = (1./16.) * (4. * L.col(5).array().square() * L.col(2).array().square() -
- ((L.col(3).array().square() + L.col(0).array().square()) -
- (L.col(4).array().square() + L.col(1).array().square())).square());
- H_sqr.col(3) = (1./16.) * (4. * L.col(0).array().square() * L.col(3).array().square() -
- ((L.col(4).array().square() + L.col(1).array().square()) -
- (L.col(5).array().square() + L.col(2).array().square())).square());
- H_sqr.col(4) = (1./16.) * (4. * L.col(1).array().square() * L.col(4).array().square() -
- ((L.col(5).array().square() + L.col(2).array().square()) -
- (L.col(0).array().square() + L.col(3).array().square())).square());
- H_sqr.col(5) = (1./16.) * (4. * L.col(2).array().square() * L.col(5).array().square() -
- ((L.col(0).array().square() + L.col(3).array().square()) -
- (L.col(1).array().square() + L.col(4).array().square())).square());
- cos_theta.resize(m,6);
- cos_theta.col(0) = (H_sqr.col(0).array() -
- A.col(1).array().square() - A.col(2).array().square()).array() /
- (-2.*A.col(1).array() * A.col(2).array());
- cos_theta.col(1) = (H_sqr.col(1).array() -
- A.col(2).array().square() - A.col(0).array().square()).array() /
- (-2.*A.col(2).array() * A.col(0).array());
- cos_theta.col(2) = (H_sqr.col(2).array() -
- A.col(0).array().square() - A.col(1).array().square()).array() /
- (-2.*A.col(0).array() * A.col(1).array());
- cos_theta.col(3) = (H_sqr.col(3).array() -
- A.col(3).array().square() - A.col(0).array().square()).array() /
- (-2.*A.col(3).array() * A.col(0).array());
- cos_theta.col(4) = (H_sqr.col(4).array() -
- A.col(3).array().square() - A.col(1).array().square()).array() /
- (-2.*A.col(3).array() * A.col(1).array());
- cos_theta.col(5) = (H_sqr.col(5).array() -
- A.col(3).array().square() - A.col(2).array().square()).array() /
- (-2.*A.col(3).array() * A.col(2).array());
- theta = cos_theta.array().acos();
- cos_theta.resize(m,6);
- }
- #ifdef IGL_STATIC_LIBRARY
- // Explicit template specialization
- template void igl::dihedral_angles_intrinsic<Eigen::Matrix<double, -1, 6, 0, -1, 6>, Eigen::Matrix<double, -1, 4, 0, -1, 4>, Eigen::Matrix<double, -1, 6, 0, -1, 6>, Eigen::Matrix<double, -1, 6, 0, -1, 6> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 6, 0, -1, 6> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 4, 0, -1, 4> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 6, 0, -1, 6> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 6, 0, -1, 6> >&);
- #endif
|