123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- #include "extract_non_manifold_edge_curves.h"
- #include <algorithm>
- #include <cassert>
- #include <list>
- #include <vector>
- #include <unordered_map>
- template<
- typename DerivedF,
- typename DerivedEMAP,
- typename uE2EType >
- IGL_INLINE void igl::extract_non_manifold_edge_curves(
- const Eigen::PlainObjectBase<DerivedF>& F,
- const Eigen::PlainObjectBase<DerivedEMAP>& /*EMAP*/,
- const std::vector<std::vector<uE2EType> >& uE2E,
- std::vector<std::vector<size_t> >& curves) {
- const size_t num_faces = F.rows();
- assert(F.cols() == 3);
- //typedef std::pair<size_t, size_t> Edge;
- auto edge_index_to_face_index = [&](size_t ei) { return ei % num_faces; };
- auto edge_index_to_corner_index = [&](size_t ei) { return ei / num_faces; };
- auto get_edge_end_points = [&](size_t ei, size_t& s, size_t& d) {
- const size_t fi = edge_index_to_face_index(ei);
- const size_t ci = edge_index_to_corner_index(ei);
- s = F(fi, (ci+1)%3);
- d = F(fi, (ci+2)%3);
- };
- curves.clear();
- const size_t num_unique_edges = uE2E.size();
- std::unordered_multimap<size_t, size_t> vertex_edge_adjacency;
- std::vector<size_t> non_manifold_edges;
- for (size_t i=0; i<num_unique_edges; i++) {
- const auto& adj_edges = uE2E[i];
- if (adj_edges.size() == 2) continue;
- const size_t ei = adj_edges[0];
- size_t s,d;
- get_edge_end_points(ei, s, d);
- vertex_edge_adjacency.insert({{s, i}, {d, i}});
- non_manifold_edges.push_back(i);
- assert(vertex_edge_adjacency.count(s) > 0);
- assert(vertex_edge_adjacency.count(d) > 0);
- }
- auto expand_forward = [&](std::list<size_t>& edge_curve,
- size_t& front_vertex, size_t& end_vertex) {
- while(vertex_edge_adjacency.count(front_vertex) == 2 &&
- front_vertex != end_vertex) {
- auto adj_edges = vertex_edge_adjacency.equal_range(front_vertex);
- for (auto itr = adj_edges.first; itr!=adj_edges.second; itr++) {
- const size_t uei = itr->second;
- assert(uE2E.at(uei).size() != 2);
- const size_t ei = uE2E[uei][0];
- if (uei == edge_curve.back()) continue;
- size_t s,d;
- get_edge_end_points(ei, s, d);
- edge_curve.push_back(uei);
- if (s == front_vertex) {
- front_vertex = d;
- } else if (d == front_vertex) {
- front_vertex = s;
- } else {
- throw "Invalid vertex/edge adjacency!";
- }
- break;
- }
- }
- };
- auto expand_backward = [&](std::list<size_t>& edge_curve,
- size_t& front_vertex, size_t& end_vertex) {
- while(vertex_edge_adjacency.count(front_vertex) == 2 &&
- front_vertex != end_vertex) {
- auto adj_edges = vertex_edge_adjacency.equal_range(front_vertex);
- for (auto itr = adj_edges.first; itr!=adj_edges.second; itr++) {
- const size_t uei = itr->second;
- assert(uE2E.at(uei).size() != 2);
- const size_t ei = uE2E[uei][0];
- if (uei == edge_curve.front()) continue;
- size_t s,d;
- get_edge_end_points(ei, s, d);
- edge_curve.push_front(uei);
- if (s == front_vertex) {
- front_vertex = d;
- } else if (d == front_vertex) {
- front_vertex = s;
- } else {
- throw "Invalid vertex/edge adjcency!";
- }
- break;
- }
- }
- };
- std::vector<bool> visited(num_unique_edges, false);
- for (const size_t i : non_manifold_edges) {
- if (visited[i]) continue;
- std::list<size_t> edge_curve;
- edge_curve.push_back(i);
- const auto& adj_edges = uE2E[i];
- assert(adj_edges.size() != 2);
- const size_t ei = adj_edges[0];
- size_t s,d;
- get_edge_end_points(ei, s, d);
- expand_forward(edge_curve, d, s);
- expand_backward(edge_curve, s, d);
- curves.emplace_back(edge_curve.begin(), edge_curve.end());
- for (auto itr = edge_curve.begin(); itr!=edge_curve.end(); itr++) {
- visited[*itr] = true;
- }
- }
- }
|