123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "mvc.h"
- #include <vector>
- #include <cassert>
- #include <iostream>
- // Broken Implementation
- IGL_INLINE void igl::mvc(const Eigen::MatrixXd &V, const Eigen::MatrixXd &C, Eigen::MatrixXd &W)
- {
-
- // at least three control points
- assert(C.rows()>2);
-
- // dimension of points
- assert(C.cols() == 3 || C.cols() == 2);
- assert(V.cols() == 3 || V.cols() == 2);
-
- // number of polygon points
- int num = C.rows();
-
- Eigen::MatrixXd V1,C1;
- int i_prev, i_next;
-
- // check if either are 3D but really all z's are 0
- bool V_flat = (V.cols() == 3) && (std::sqrt( (V.col(3)).dot(V.col(3)) ) < 1e-10);
- bool C_flat = (C.cols() == 3) && (std::sqrt( (C.col(3)).dot(C.col(3)) ) < 1e-10);
- // if both are essentially 2D then ignore z-coords
- if((C.cols() == 2 || C_flat) && (V.cols() == 2 || V_flat))
- {
- // ignore z coordinate
- V1 = V.block(0,0,V.rows(),2);
- C1 = C.block(0,0,C.rows(),2);
- }
- else
- {
- // give dummy z coordinate to either mesh or poly
- if(V.rows() == 2)
- {
- V1 = Eigen::MatrixXd(V.rows(),3);
- V1.block(0,0,V.rows(),2) = V;
- }
- else
- V1 = V;
- if(C.rows() == 2)
- {
- C1 = Eigen::MatrixXd(C.rows(),3);
- C1.block(0,0,C.rows(),2) = C;
- }
- else
- C1 = C;
- // check that C is planar
- // average normal around poly corners
- Eigen::Vector3d n = Eigen::Vector3d::Zero();
- // take centroid as point on plane
- Eigen::Vector3d p = Eigen::Vector3d::Zero();
- for (int i = 0; i<num; ++i)
- {
- i_prev = (i>0)?(i-1):(num-1);
- i_next = (i<num-1)?(i+1):0;
- Eigen::Vector3d vnext = (C1.row(i_next) - C1.row(i)).transpose();
- Eigen::Vector3d vprev = (C1.row(i_prev) - C1.row(i)).transpose();
- n += vnext.cross(vprev);
- p += C1.row(i);
- }
- p/=num;
- n/=num;
- // normalize n
- n /= std::sqrt(n.dot(n));
-
- // check that poly is really coplanar
- #ifndef NDEBUG
- for (int i = 0; i<num; ++i)
- {
- double dist_to_plane_C = std::abs((C1.row(i)-p.transpose()).dot(n));
- assert(dist_to_plane_C<1e-10);
- }
- #endif
-
- // check that poly is really coplanar
- for (int i = 0; i<V1.rows(); ++i)
- {
- double dist_to_plane_V = std::abs((V1.row(i)-p.transpose()).dot(n));
- if(dist_to_plane_V>1e-10)
- std::cerr<<"Distance from V to plane of C is large..."<<std::endl;
- }
-
- // change of basis
- Eigen::Vector3d b1 = C1.row(1)-C1.row(0);
- Eigen::Vector3d b2 = n.cross(b1);
- // normalize basis rows
- b1 /= std::sqrt(b1.dot(b1));
- b2 /= std::sqrt(b2.dot(b2));
- n /= std::sqrt(n.dot(n));
-
- //transpose of the basis matrix in the m-file
- Eigen::Matrix3d basis = Eigen::Matrix3d::Zero();
- basis.col(0) = b1;
- basis.col(1) = b2;
- basis.col(2) = n;
-
- // change basis of rows vectors by right multiplying with inverse of matrix
- // with basis vectors as rows
- Eigen::ColPivHouseholderQR<Eigen::Matrix3d> solver = basis.colPivHouseholderQr();
- // Throw away coordinates in normal direction
- V1 = solver.solve(V1.transpose()).transpose().block(0,0,V1.rows(),2);
- C1 = solver.solve(C1.transpose()).transpose().block(0,0,C1.rows(),2);
-
- }
-
- // vectors from V to every C, where CmV(i,j,:) is the vector from domain
- // vertex j to handle i
- double EPS = 1e-10;
- Eigen::MatrixXd WW = Eigen::MatrixXd(C1.rows(), V1.rows());
- Eigen::MatrixXd dist_C_V (C1.rows(), V1.rows());
- std::vector< std::pair<int,int> > on_corner(0);
- std::vector< std::pair<int,int> > on_segment(0);
- for (int i = 0; i<C1.rows(); ++i)
- {
- i_prev = (i>0)?(i-1):(num-1);
- i_next = (i<num-1)?(i+1):0;
- // distance from each corner in C to the next corner so that edge_length(i)
- // is the distance from C(i,:) to C(i+1,:) defined cyclically
- double edge_length = std::sqrt((C1.row(i) - C1.row(i_next)).dot(C1.row(i) - C1.row(i_next)));
- for (int j = 0; j<V1.rows(); ++j)
- {
- Eigen::VectorXd v = C1.row(i) - V1.row(j);
- Eigen::VectorXd vnext = C1.row(i_next) - V1.row(j);
- Eigen::VectorXd vprev = C1.row(i_prev) - V1.row(j);
- // distance from V to every C, where dist_C_V(i,j) is the distance from domain
- // vertex j to handle i
- dist_C_V(i,j) = std::sqrt(v.dot(v));
- double dist_C_V_next = std::sqrt(vnext.dot(vnext));
- double a_prev = std::atan2(vprev[1],vprev[0]) - std::atan2(v[1],v[0]);
- double a_next = std::atan2(v[1],v[0]) - std::atan2(vnext[1],vnext[0]);
- // mean value coordinates
- WW(i,j) = (std::tan(a_prev/2.0) + std::tan(a_next/2.0)) / dist_C_V(i,j);
-
- if (dist_C_V(i,j) < EPS)
- on_corner.push_back(std::make_pair(j,i));
- else
- // only in case of no-corner (no need for checking for multiple segments afterwards --
- // should only be on one segment (otherwise must be on a corner and we already
- // handled that)
- // domain vertex j is on the segment from i to i+1 if the distances from vj to
- // pi and pi+1 are about
- if(std::abs((dist_C_V(i,j) + dist_C_V_next) / edge_length - 1) < EPS)
- on_segment.push_back(std::make_pair(j,i));
-
- }
- }
-
- // handle degenerate cases
- // snap vertices close to corners
- for (unsigned i = 0; i<on_corner.size(); ++i)
- {
- int vi = on_corner[i].first;
- int ci = on_corner[i].second;
- for (int ii = 0; ii<C.rows(); ++ii)
- WW(ii,vi) = (ii==ci)?1:0;
- }
-
- // snap vertices close to segments
- for (unsigned i = 0; i<on_segment.size(); ++i)
- {
- int vi = on_segment[i].first;
- int ci = on_segment[i].second;
- int ci_next = (ci<num-1)?(ci+1):0;
- for (int ii = 0; ii<C.rows(); ++ii)
- if (ii == ci)
- WW(ii,vi) = dist_C_V(ci_next,vi);
- else
- {
- if ( ii == ci_next)
- WW(ii,vi) = dist_C_V(ci,vi);
- else
- WW(ii,vi) = 0;
- }
- }
-
- // normalize W
- for (int i = 0; i<V.rows(); ++i)
- WW.col(i) /= WW.col(i).sum();
-
- // we've made W transpose
- W = WW.transpose();
- }
|