py_doc.cpp 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108
  1. const char *__doc_igl_active_set = R"igl_Qu8mg5v7(// Known Bugs: rows of [Aeq;Aieq] **must** be linearly independent. Should be
  2. // using QR decomposition otherwise:
  3. // http://www.okstate.edu/sas/v8/sashtml/ormp/chap5/sect32.htm
  4. //
  5. // ACTIVE_SET Minimize quadratic energy
  6. //
  7. // 0.5*Z'*A*Z + Z'*B + C with constraints
  8. //
  9. // that Z(known) = Y, optionally also subject to the constraints Aeq*Z = Beq,
  10. // and further optionally subject to the linear inequality constraints that
  11. // Aieq*Z <= Bieq and constant inequality constraints lx <= x <= ux
  12. //
  13. // Inputs:
  14. // A n by n matrix of quadratic coefficients
  15. // B n by 1 column of linear coefficients
  16. // known list of indices to known rows in Z
  17. // Y list of fixed values corresponding to known rows in Z
  18. // Aeq meq by n list of linear equality constraint coefficients
  19. // Beq meq by 1 list of linear equality constraint constant values
  20. // Aieq mieq by n list of linear inequality constraint coefficients
  21. // Bieq mieq by 1 list of linear inequality constraint constant values
  22. // lx n by 1 list of lower bounds [] implies -Inf
  23. // ux n by 1 list of upper bounds [] implies Inf
  24. // params struct of additional parameters (see below)
  25. // Z if not empty, is taken to be an n by 1 list of initial guess values
  26. // (see output)
  27. // Outputs:
  28. // Z n by 1 list of solution values
  29. // Returns true on success, false on error
  30. //
  31. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  32. // secs, igl/min_quad_with_fixed.h 7.1 secs
  33. //)igl_Qu8mg5v7";
  34. const char *__doc_igl_arap_precomputation = R"igl_Qu8mg5v7(// Compute necessary information to start using an ARAP deformation
  35. //
  36. // Inputs:
  37. // V #V by dim list of mesh positions
  38. // F #F by simplex-size list of triangle|tet indices into V
  39. // dim dimension being used at solve time. For deformation usually dim =
  40. // V.cols(), for surface parameterization V.cols() = 3 and dim = 2
  41. // b #b list of "boundary" fixed vertex indices into V
  42. // Outputs:
  43. // data struct containing necessary precomputation)igl_Qu8mg5v7";
  44. const char *__doc_igl_arap_solve = R"igl_Qu8mg5v7(// Inputs:
  45. // bc #b by dim list of boundary conditions
  46. // data struct containing necessary precomputation and parameters
  47. // U #V by dim initial guess)igl_Qu8mg5v7";
  48. const char *__doc_igl_avg_edge_length = R"igl_Qu8mg5v7(// Compute the average edge length for the given triangle mesh
  49. // Templates:
  50. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  51. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  52. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  53. // Inputs:
  54. // V eigen matrix #V by 3
  55. // F #F by simplex-size list of mesh faces (must be simplex)
  56. // Outputs:
  57. // l average edge length
  58. //
  59. // See also: adjacency_matrix)igl_Qu8mg5v7";
  60. const char *__doc_igl_barycenter = R"igl_Qu8mg5v7(// Computes the barycenter of every simplex
  61. //
  62. // Inputs:
  63. // V #V x dim matrix of vertex coordinates
  64. // F #F x simplex_size matrix of indices of simplex corners into V
  65. // Output:
  66. // BC #F x dim matrix of 3d vertices
  67. //)igl_Qu8mg5v7";
  68. const char *__doc_igl_barycentric_coordinates = R"igl_Qu8mg5v7(// Compute barycentric coordinates in a tet
  69. //
  70. // Inputs:
  71. // P #P by 3 Query points in 3d
  72. // A #P by 3 Tet corners in 3d
  73. // B #P by 3 Tet corners in 3d
  74. // C #P by 3 Tet corners in 3d
  75. // D #P by 3 Tet corners in 3d
  76. // Outputs:
  77. // L #P by 4 list of barycentric coordinates
  78. // )igl_Qu8mg5v7";
  79. const char *__doc_igl_boundary_facets = R"igl_Qu8mg5v7(// BOUNDARY_FACETS Determine boundary faces (edges) of tetrahedra (triangles)
  80. // stored in T (analogous to qptoolbox's `outline` and `boundary_faces`).
  81. //
  82. // Templates:
  83. // IntegerT integer-value: e.g. int
  84. // IntegerF integer-value: e.g. int
  85. // Input:
  86. // T tetrahedron (triangle) index list, m by 4 (3), where m is the number of tetrahedra
  87. // Output:
  88. // F list of boundary faces, n by 3 (2), where n is the number of boundary faces
  89. //
  90. //)igl_Qu8mg5v7";
  91. const char *__doc_igl_boundary_loop = R"igl_Qu8mg5v7(// Compute list of ordered boundary loops for a manifold mesh.
  92. //
  93. // Templates:
  94. // Index index type
  95. // Inputs:
  96. // F #V by dim list of mesh faces
  97. // Outputs:
  98. // L list of loops where L[i] = ordered list of boundary vertices in loop i
  99. //)igl_Qu8mg5v7";
  100. const char *__doc_igl_cat = R"igl_Qu8mg5v7(// Perform concatenation of a two matrices along a single dimension
  101. // If dim == 1, then C = [A;B]. If dim == 2 then C = [A B]
  102. //
  103. // Template:
  104. // Scalar scalar data type for sparse matrices like double or int
  105. // Mat matrix type for all matrices (e.g. MatrixXd, SparseMatrix)
  106. // MatC matrix type for ouput matrix (e.g. MatrixXd) needs to support
  107. // resize
  108. // Inputs:
  109. // A first input matrix
  110. // B second input matrix
  111. // dim dimension along which to concatenate, 0 or 1
  112. // Outputs:
  113. // C output matrix
  114. // )igl_Qu8mg5v7";
  115. const char *__doc_igl_collapse_edge = R"igl_Qu8mg5v7(See collapse_edge for the documentation.)igl_Qu8mg5v7";
  116. const char *__doc_igl_colon = R"igl_Qu8mg5v7(// Colon operator like matlab's colon operator. Enumerats values between low
  117. // and hi with step step.
  118. // Templates:
  119. // L should be a eigen matrix primitive type like int or double
  120. // S should be a eigen matrix primitive type like int or double
  121. // H should be a eigen matrix primitive type like int or double
  122. // T should be a eigen matrix primitive type like int or double
  123. // Inputs:
  124. // low starting value if step is valid then this is *always* the first
  125. // element of I
  126. // step step difference between sequential elements returned in I,
  127. // remember this will be cast to template T at compile time. If low<hi
  128. // then step must be positive. If low>hi then step must be negative.
  129. // Otherwise I will be set to empty.
  130. // hi ending value, if (hi-low)%step is zero then this will be the last
  131. // element in I. If step is positive there will be no elements greater
  132. // than hi, vice versa if hi<low
  133. // Output:
  134. // I list of values from low to hi with step size step)igl_Qu8mg5v7";
  135. const char *__doc_igl_comb_cross_field = R"igl_Qu8mg5v7(// Inputs:
  136. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  137. // F #F by 4 eigen Matrix of face (quad) indices
  138. // PD1in #F by 3 eigen Matrix of the first per face cross field vector
  139. // PD2in #F by 3 eigen Matrix of the second per face cross field vector
  140. // Output:
  141. // PD1out #F by 3 eigen Matrix of the first combed cross field vector
  142. // PD2out #F by 3 eigen Matrix of the second combed cross field vector
  143. //)igl_Qu8mg5v7";
  144. const char *__doc_igl_comb_frame_field = R"igl_Qu8mg5v7(// Inputs:
  145. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  146. // F #F by 4 eigen Matrix of face (quad) indices
  147. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  148. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  149. // BIS1_combed #F by 3 eigen Matrix of the first combed bisector field vector
  150. // BIS2_combed #F by 3 eigen Matrix of the second combed bisector field vector
  151. // Output:
  152. // PD1_combed #F by 3 eigen Matrix of the first combed cross field vector
  153. // PD2_combed #F by 3 eigen Matrix of the second combed cross field vector
  154. //)igl_Qu8mg5v7";
  155. const char *__doc_igl_compute_frame_field_bisectors = R"igl_Qu8mg5v7(// Compute bisectors of a frame field defined on mesh faces
  156. // Inputs:
  157. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  158. // F #F by 3 eigen Matrix of face (triangle) indices
  159. // B1 #F by 3 eigen Matrix of face (triangle) base vector 1
  160. // B2 #F by 3 eigen Matrix of face (triangle) base vector 2
  161. // PD1 #F by 3 eigen Matrix of the first per face frame field vector
  162. // PD2 #F by 3 eigen Matrix of the second per face frame field vector
  163. // Output:
  164. // BIS1 #F by 3 eigen Matrix of the first per face frame field bisector
  165. // BIS2 #F by 3 eigen Matrix of the second per face frame field bisector
  166. //)igl_Qu8mg5v7";
  167. const char *__doc_igl_copyleft_cgal_mesh_boolean = R"igl_Qu8mg5v7(// MESH_BOOLEAN Compute boolean csg operations on "solid", consistently
  168. // oriented meshes.
  169. //
  170. // Inputs:
  171. // VA #VA by 3 list of vertex positions of first mesh
  172. // FA #FA by 3 list of triangle indices into VA
  173. // VB #VB by 3 list of vertex positions of second mesh
  174. // FB #FB by 3 list of triangle indices into VB
  175. // type type of boolean operation
  176. // Outputs:
  177. // VC #VC by 3 list of vertex positions of boolean result mesh
  178. // FC #FC by 3 list of triangle indices into VC
  179. // J #FC list of indices into [FA;FA.rows()+FB] revealing "birth" facet
  180. // Returns true if inputs induce a piecewise constant winding number
  181. // field and type is valid
  182. //
  183. // See also: mesh_boolean_cork, intersect_other,
  184. // remesh_self_intersections)igl_Qu8mg5v7";
  185. const char *__doc_igl_copyleft_comiso_miq = R"igl_Qu8mg5v7(// Inputs:
  186. // V #V by 3 list of mesh vertex 3D positions
  187. // F #F by 3 list of faces indices in V
  188. // PD1 #V by 3 first line of the Jacobian per triangle
  189. // PD2 #V by 3 second line of the Jacobian per triangle
  190. // (optional, if empty it will be a vector in the tangent plane orthogonal to PD1)
  191. // scale global scaling for the gradient (controls the quads resolution)
  192. // stiffness weight for the stiffness iterations
  193. // direct_round greedily round all integer variables at once (greatly improves optimization speed but lowers quality)
  194. // iter stiffness iterations (0 = no stiffness)
  195. // local_iter number of local iterations for the integer rounding
  196. // do_round enables the integer rounding (disabling it could be useful for debugging)
  197. // round_vertices id of additional vertices that should be snapped to integer coordinates
  198. // hard_features #H by 2 list of pairs of vertices that belongs to edges that should be snapped to integer coordinates
  199. //
  200. // Output:
  201. // UV #UV by 2 list of vertices in 2D
  202. // FUV #FUV by 3 list of face indices in UV
  203. //
  204. // TODO: rename the parameters name in the cpp consistenly
  205. // improve the handling of hard_features, right now it might fail in difficult cases)igl_Qu8mg5v7";
  206. const char *__doc_igl_copyleft_comiso_nrosy = R"igl_Qu8mg5v7(// Generate a N-RoSy field from a sparse set of constraints
  207. //
  208. // Inputs:
  209. // V #V by 3 list of mesh vertex coordinates
  210. // F #F by 3 list of mesh faces (must be triangles)
  211. // b #B by 1 list of constrained face indices
  212. // bc #B by 3 list of representative vectors for the constrained
  213. // faces
  214. // b_soft #S by 1 b for soft constraints
  215. // w_soft #S by 1 weight for the soft constraints (0-1)
  216. // bc_soft #S by 3 bc for soft constraints
  217. // N the degree of the N-RoSy vector field
  218. // soft the strenght of the soft contraints w.r.t. smoothness
  219. // (0 -> smoothness only, 1->constraints only)
  220. // Outputs:
  221. // R #F by 3 the representative vectors of the interpolated field
  222. // S #V by 1 the singularity index for each vertex (0 = regular))igl_Qu8mg5v7";
  223. const char *__doc_igl_copyleft_marching_cubes = R"igl_Qu8mg5v7(// marching_cubes( values, points, x_res, y_res, z_res, vertices, faces )
  224. //
  225. // performs marching cubes reconstruction on the grid defined by values, and
  226. // points, and generates vertices and faces
  227. //
  228. // Input:
  229. // values #number_of_grid_points x 1 array -- the scalar values of an
  230. // implicit function defined on the grid points (<0 in the inside of the
  231. // surface, 0 on the border, >0 outside)
  232. // points #number_of_grid_points x 3 array -- 3-D positions of the grid
  233. // points, ordered in x,y,z order:
  234. // points[index] = the point at (x,y,z) where :
  235. // x = (index % (xres -1),
  236. // y = (index / (xres-1)) %(yres-1),
  237. // z = index / (xres -1) / (yres -1) ).
  238. // where x,y,z index x, y, z dimensions
  239. // i.e. index = x + y*xres + z*xres*yres
  240. // xres resolutions of the grid in x dimension
  241. // yres resolutions of the grid in y dimension
  242. // zres resolutions of the grid in z dimension
  243. // Output:
  244. // vertices #V by 3 list of mesh vertex positions
  245. // faces #F by 3 list of mesh triangle indices
  246. //)igl_Qu8mg5v7";
  247. const char *__doc_igl_copyleft_swept_volume = R"igl_Qu8mg5v7(// Compute the surface of the swept volume of a solid object with surface
  248. // (V,F) mesh under going rigid motion.
  249. //
  250. // Inputs:
  251. // V #V by 3 list of mesh positions in reference pose
  252. // F #F by 3 list of mesh indices into V
  253. // transform function handle so that transform(t) returns the rigid
  254. // transformation at time t∈[0,1]
  255. // steps number of time steps: steps=3 --> t∈{0,0.5,1}
  256. // grid_res number of grid cells on the longest side containing the
  257. // motion (isolevel+1 cells will also be added on each side as padding)
  258. // isolevel distance level to be contoured as swept volume
  259. // Outputs:
  260. // SV #SV by 3 list of mesh positions of the swept surface
  261. // SF #SF by 3 list of mesh faces into SV)igl_Qu8mg5v7";
  262. const char *__doc_igl_copyleft_tetgen_tetrahedralize = R"igl_Qu8mg5v7(// Mesh the interior of a surface mesh (V,F) using tetgen
  263. //
  264. // Inputs:
  265. // V #V by 3 vertex position list
  266. // F #F list of polygon face indices into V (0-indexed)
  267. // switches string of tetgen options (See tetgen documentation) e.g.
  268. // "pq1.414a0.01" tries to mesh the interior of a given surface with
  269. // quality and area constraints
  270. // "" will mesh the convex hull constrained to pass through V (ignores F)
  271. // Outputs:
  272. // TV #V by 3 vertex position list
  273. // TT #T by 4 list of tet face indices
  274. // TF #F by 3 list of triangle face indices
  275. // Returns status:
  276. // 0 success
  277. // 1 tetgen threw exception
  278. // 2 tetgen did not crash but could not create any tets (probably there are
  279. // holes, duplicate faces etc.)
  280. // -1 other error)igl_Qu8mg5v7";
  281. const char *__doc_igl_cotmatrix = R"igl_Qu8mg5v7(// Constructs the cotangent stiffness matrix (discrete laplacian) for a given
  282. // mesh (V,F).
  283. //
  284. // Templates:
  285. // DerivedV derived type of eigen matrix for V (e.g. derived from
  286. // MatrixXd)
  287. // DerivedF derived type of eigen matrix for F (e.g. derived from
  288. // MatrixXi)
  289. // Scalar scalar type for eigen sparse matrix (e.g. double)
  290. // Inputs:
  291. // V #V by dim list of mesh vertex positions
  292. // F #F by simplex_size list of mesh faces (must be triangles)
  293. // Outputs:
  294. // L #V by #V cotangent matrix, each row i corresponding to V(i,:)
  295. //
  296. // See also: adjacency_matrix
  297. //
  298. // Note: This Laplacian uses the convention that diagonal entries are
  299. // **minus** the sum of off-diagonal entries. The diagonal entries are
  300. // therefore in general negative and the matrix is **negative** semi-definite
  301. // (immediately, -L is **positive** semi-definite)
  302. //
  303. // Known bugs: off by 1e-16 on regular grid. I think its a problem of
  304. // arithmetic order in cotmatrix_entries.h: C(i,e) = (arithmetic)/dblA/4)igl_Qu8mg5v7";
  305. const char *__doc_igl_covariance_scatter_matrix = R"igl_Qu8mg5v7(// Construct the covariance scatter matrix for a given arap energy
  306. // Inputs:
  307. // V #V by Vdim list of initial domain positions
  308. // F #F by 3 list of triangle indices into V
  309. // energy ARAPEnergyType enum value defining which energy is being used.
  310. // See ARAPEnergyType.h for valid options and explanations.
  311. // Outputs:
  312. // CSM dim*#V/#F by dim*#V sparse matrix containing special laplacians along
  313. // the diagonal so that when multiplied by V gives covariance matrix
  314. // elements, can be used to speed up covariance matrix computation)igl_Qu8mg5v7";
  315. const char *__doc_igl_cross_field_missmatch = R"igl_Qu8mg5v7(// Inputs:
  316. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  317. // F #F by 3 eigen Matrix of face (quad) indices
  318. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  319. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  320. // isCombed boolean, specifying whether the field is combed (i.e. matching has been precomputed.
  321. // If not, the field is combed first.
  322. // Output:
  323. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  324. // across all face edges
  325. //)igl_Qu8mg5v7";
  326. const char *__doc_igl_cut_mesh_from_singularities = R"igl_Qu8mg5v7(// Given a mesh (V,F) and the integer mismatch of a cross field per edge
  327. // (MMatch), finds the cut_graph connecting the singularities (seams) and the
  328. // degree of the singularities singularity_index
  329. //
  330. // Input:
  331. // V #V by 3 list of mesh vertex positions
  332. // F #F by 3 list of faces
  333. // MMatch #F by 3 list of per corner integer mismatch
  334. // Outputs:
  335. // seams #F by 3 list of per corner booleans that denotes if an edge is a
  336. // seam or not
  337. //)igl_Qu8mg5v7";
  338. const char *__doc_igl_doublearea = R"igl_Qu8mg5v7(// DOUBLEAREA computes twice the area for each input triangle[quad]
  339. //
  340. // Templates:
  341. // DerivedV derived type of eigen matrix for V (e.g. derived from
  342. // MatrixXd)
  343. // DerivedF derived type of eigen matrix for F (e.g. derived from
  344. // MatrixXi)
  345. // DeriveddblA derived type of eigen matrix for dblA (e.g. derived from
  346. // MatrixXd)
  347. // Inputs:
  348. // V #V by dim list of mesh vertex positions
  349. // F #F by simplex_size list of mesh faces (must be triangles or quads)
  350. // Outputs:
  351. // dblA #F list of triangle[quad] double areas (SIGNED only for 2D input)
  352. //
  353. // Known bug: For dim==3 complexity is O(#V + #F)!! Not just O(#F). This is a big deal
  354. // if you have 1million unreferenced vertices and 1 face)igl_Qu8mg5v7";
  355. const char *__doc_igl_doublearea_single = R"igl_Qu8mg5v7(// Single triangle in 2D!
  356. //
  357. // This should handle streams of corners not just single corners)igl_Qu8mg5v7";
  358. const char *__doc_igl_doublearea_quad = R"igl_Qu8mg5v7(// DOUBLEAREA_QUAD computes twice the area for each input quadrilateral
  359. //
  360. // Inputs:
  361. // V #V by dim list of mesh vertex positions
  362. // F #F by simplex_size list of mesh faces (must be quadrilaterals)
  363. // Outputs:
  364. // dblA #F list of quadrilateral double areas
  365. //)igl_Qu8mg5v7";
  366. const char *__doc_igl_edge_lengths = R"igl_Qu8mg5v7(// Constructs a list of lengths of edges opposite each index in a face
  367. // (triangle/tet) list
  368. //
  369. // Templates:
  370. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  371. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  372. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  373. // Inputs:
  374. // V eigen matrix #V by 3
  375. // F #F by 2 list of mesh edges
  376. // or
  377. // F #F by 3 list of mesh faces (must be triangles)
  378. // or
  379. // T #T by 4 list of mesh elements (must be tets)
  380. // Outputs:
  381. // L #F by {1|3|6} list of edge lengths
  382. // for edges, column of lengths
  383. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  384. // for tets, columns correspond to edges
  385. // [3 0],[3 1],[3 2],[1 2],[2 0],[0 1]
  386. //)igl_Qu8mg5v7";
  387. const char *__doc_igl_eigs = R"igl_Qu8mg5v7(See eigs for the documentation.)igl_Qu8mg5v7";
  388. const char *__doc_igl_embree_ambient_occlusion = R"igl_Qu8mg5v7(// Compute ambient occlusion per given point
  389. //
  390. // Inputs:
  391. // ei EmbreeIntersector containing (V,F)
  392. // P #P by 3 list of origin points
  393. // N #P by 3 list of origin normals
  394. // Outputs:
  395. // S #P list of ambient occlusion values between 1 (fully occluded) and
  396. // 0 (not occluded)
  397. //)igl_Qu8mg5v7";
  398. const char *__doc_igl_embree_reorient_facets_raycast = R"igl_Qu8mg5v7(// Orient each component (identified by C) of a mesh (V,F) using ambient
  399. // occlusion such that the front side is less occluded than back side, as
  400. // described in "A Simple Method for Correcting Facet Orientations in
  401. // Polygon Meshes Based on Ray Casting" [Takayama et al. 2014].
  402. //
  403. // Inputs:
  404. // V #V by 3 list of vertex positions
  405. // F #F by 3 list of triangle indices
  406. // rays_total Total number of rays that will be shot
  407. // rays_minimum Minimum number of rays that each patch should receive
  408. // facet_wise Decision made for each face independently, no use of patches
  409. // (i.e., each face is treated as a patch)
  410. // use_parity Use parity mode
  411. // is_verbose Verbose output to cout
  412. // Outputs:
  413. // I #F list of whether face has been flipped
  414. // C #F list of patch ID (output of bfs_orient > manifold patches))igl_Qu8mg5v7";
  415. const char *__doc_igl_find_cross_field_singularities = R"igl_Qu8mg5v7(// Inputs:
  416. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  417. // F #F by 3 eigen Matrix of face (quad) indices
  418. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  419. // across all face edges
  420. // Output:
  421. // isSingularity #V by 1 boolean eigen Vector indicating the presence of a singularity on a vertex
  422. // singularityIndex #V by 1 integer eigen Vector containing the singularity indices
  423. //)igl_Qu8mg5v7";
  424. const char *__doc_igl_fit_rotations = R"igl_Qu8mg5v7(// Known issues: This seems to be implemented in Eigen/Geometry:
  425. // Eigen::umeyama
  426. //
  427. // FIT_ROTATIONS Given an input mesh and new positions find rotations for
  428. // every covariance matrix in a stack of covariance matrices
  429. //
  430. // Inputs:
  431. // S nr*dim by dim stack of covariance matrices
  432. // single_precision whether to use single precision (faster)
  433. // Outputs:
  434. // R dim by dim * nr list of rotations
  435. //)igl_Qu8mg5v7";
  436. const char *__doc_igl_fit_rotations_planar = R"igl_Qu8mg5v7(// FIT_ROTATIONS Given an input mesh and new positions find 2D rotations for
  437. // every vertex that best maps its one ring to the new one ring
  438. //
  439. // Inputs:
  440. // S nr*dim by dim stack of covariance matrices, third column and every
  441. // third row will be ignored
  442. // Outputs:
  443. // R dim by dim * nr list of rotations, third row and third column of each
  444. // rotation will just be identity
  445. //)igl_Qu8mg5v7";
  446. const char *__doc_igl_fit_rotations_SSE = R"igl_Qu8mg5v7(See fit_rotations_SSE for the documentation.)igl_Qu8mg5v7";
  447. const char *__doc_igl_floor = R"igl_Qu8mg5v7(// Floor a given matrix to nearest integers
  448. //
  449. // Inputs:
  450. // X m by n matrix of scalars
  451. // Outputs:
  452. // Y m by n matrix of floored integers)igl_Qu8mg5v7";
  453. const char *__doc_igl_gaussian_curvature = R"igl_Qu8mg5v7(// Compute discrete local integral gaussian curvature (angle deficit, without
  454. // averaging by local area).
  455. //
  456. // Inputs:
  457. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  458. // F #F by 3 eigen Matrix of face (triangle) indices
  459. // Output:
  460. // K #V by 1 eigen Matrix of discrete gaussian curvature values
  461. //)igl_Qu8mg5v7";
  462. const char *__doc_igl_get_seconds = R"igl_Qu8mg5v7(// Return the current time in seconds since program start
  463. //
  464. // Example:
  465. // const auto & tictoc = []()
  466. // {
  467. // static double t_start = igl::get_seconds();
  468. // double diff = igl::get_seconds()-t_start;
  469. // t_start += diff;
  470. // return diff;
  471. // };
  472. // tictoc();
  473. // ... // part 1
  474. // cout<<"part 1: "<<tictoc()<<endl;
  475. // ... // part 2
  476. // cout<<"part 2: "<<tictoc()<<endl;
  477. // ... // etc)igl_Qu8mg5v7";
  478. const char *__doc_igl_grad = R"igl_Qu8mg5v7(// Gradient of a scalar function defined on piecewise linear elements (mesh)
  479. // is constant on each triangle i,j,k:
  480. // grad(Xijk) = (Xj-Xi) * (Vi - Vk)^R90 / 2A + (Xk-Xi) * (Vj - Vi)^R90 / 2A
  481. // where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
  482. // i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
  483. // 90 degrees
  484. //)igl_Qu8mg5v7";
  485. const char *__doc_igl_harmonic = R"igl_Qu8mg5v7(// Compute k-harmonic weight functions "coordinates".
  486. //
  487. //
  488. // Inputs:
  489. // V #V by dim vertex positions
  490. // F #F by simplex-size list of element indices
  491. // b #b boundary indices into V
  492. // bc #b by #W list of boundary values
  493. // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
  494. // Outputs:
  495. // W #V by #W list of weights
  496. //)igl_Qu8mg5v7";
  497. const char *__doc_igl_hsv_to_rgb = R"igl_Qu8mg5v7(// Convert RGB to HSV
  498. //
  499. // Inputs:
  500. // h hue value (degrees: [0,360])
  501. // s saturation value ([0,1])
  502. // v value value ([0,1])
  503. // Outputs:
  504. // r red value ([0,1])
  505. // g green value ([0,1])
  506. // b blue value ([0,1]))igl_Qu8mg5v7";
  507. const char *__doc_igl_internal_angles = R"igl_Qu8mg5v7(// Compute internal angles for a triangle mesh
  508. //
  509. // Inputs:
  510. // V #V by dim eigen Matrix of mesh vertex nD positions
  511. // F #F by poly-size eigen Matrix of face (triangle) indices
  512. // Output:
  513. // K #F by poly-size eigen Matrix of internal angles
  514. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  515. //
  516. // Known Issues:
  517. // if poly-size ≠ 3 then dim must equal 3.)igl_Qu8mg5v7";
  518. const char *__doc_igl_invert_diag = R"igl_Qu8mg5v7(// Templates:
  519. // T should be a eigen sparse matrix primitive type like int or double
  520. // Inputs:
  521. // X an m by n sparse matrix
  522. // Outputs:
  523. // Y an m by n sparse matrix)igl_Qu8mg5v7";
  524. const char *__doc_igl_is_irregular_vertex = R"igl_Qu8mg5v7(// Determine if a vertex is irregular, i.e. it has more than 6 (triangles)
  525. // or 4 (quads) incident edges. Vertices on the boundary are ignored.
  526. //
  527. // Inputs:
  528. // V #V by dim list of vertex positions
  529. // F #F by 3[4] list of triangle[quads] indices
  530. // Returns #V vector of bools revealing whether vertices are singular
  531. //)igl_Qu8mg5v7";
  532. const char *__doc_igl_jet = R"igl_Qu8mg5v7(// JET like MATLAB's jet
  533. //
  534. // Inputs:
  535. // m number of colors
  536. // Outputs:
  537. // J m by list of RGB colors between 0 and 1
  538. //
  539. //#ifndef IGL_NO_EIGEN
  540. // void jet(const int m, Eigen::MatrixXd & J);
  541. //#endif
  542. // Wrapper for directly computing [r,g,b] values for a given factor f between
  543. // 0 and 1
  544. //
  545. // Inputs:
  546. // f factor determining color value as if 0 was min and 1 was max
  547. // Outputs:
  548. // r red value
  549. // g green value
  550. // b blue value)igl_Qu8mg5v7";
  551. const char *__doc_igl_local_basis = R"igl_Qu8mg5v7(// Compute a local orthogonal reference system for each triangle in the given mesh
  552. // Templates:
  553. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  554. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  555. // Inputs:
  556. // V eigen matrix #V by 3
  557. // F #F by 3 list of mesh faces (must be triangles)
  558. // Outputs:
  559. // B1 eigen matrix #F by 3, each vector is tangent to the triangle
  560. // B2 eigen matrix #F by 3, each vector is tangent to the triangle and perpendicular to B1
  561. // B3 eigen matrix #F by 3, normal of the triangle
  562. //
  563. // See also: adjacency_matrix)igl_Qu8mg5v7";
  564. const char *__doc_igl_lscm = R"igl_Qu8mg5v7(// Compute a Least-squares conformal map parametrization (equivalently
  565. // derived in "Intrinsic Parameterizations of Surface Meshes" [Desbrun et al.
  566. // 2002] and "Least Squares Conformal Maps for Automatic Texture Atlas
  567. // Generation" [Lévy et al. 2002]), though this implementation follows the
  568. // derivation in: "Spectral Conformal Parameterization" [Mullen et al. 2008]
  569. // (note, this does **not** implement the Eigen-decomposition based method in
  570. // [Mullen et al. 2008], which is not equivalent). Input should be a manifold
  571. // mesh (also no unreferenced vertices) and "boundary" (fixed vertices) `b`
  572. // should contain at least two vertices per connected component.
  573. //
  574. // Inputs:
  575. // V #V by 3 list of mesh vertex positions
  576. // F #F by 3 list of mesh faces (must be triangles)
  577. // b #b boundary indices into V
  578. // bc #b by 3 list of boundary values
  579. // Outputs:
  580. // UV #V by 2 list of 2D mesh vertex positions in UV space
  581. // Returns true only on solver success.
  582. //)igl_Qu8mg5v7";
  583. const char *__doc_igl_map_vertices_to_circle = R"igl_Qu8mg5v7(// Map the vertices whose indices are in a given boundary loop (bnd) on the
  584. // unit circle with spacing proportional to the original boundary edge
  585. // lengths.
  586. //
  587. // Inputs:
  588. // V #V by dim list of mesh vertex positions
  589. // b #W list of vertex ids
  590. // Outputs:
  591. // UV #W by 2 list of 2D position on the unit circle for the vertices in b)igl_Qu8mg5v7";
  592. const char *__doc_igl_massmatrix = R"igl_Qu8mg5v7(// Constructs the mass (area) matrix for a given mesh (V,F).
  593. //
  594. // Templates:
  595. // DerivedV derived type of eigen matrix for V (e.g. derived from
  596. // MatrixXd)
  597. // DerivedF derived type of eigen matrix for F (e.g. derived from
  598. // MatrixXi)
  599. // Scalar scalar type for eigen sparse matrix (e.g. double)
  600. // Inputs:
  601. // V #V by dim list of mesh vertex positions
  602. // F #F by simplex_size list of mesh faces (must be triangles)
  603. // type one of the following ints:
  604. // MASSMATRIX_TYPE_BARYCENTRIC barycentric
  605. // MASSMATRIX_TYPE_VORONOI voronoi-hybrid {default}
  606. // MASSMATRIX_TYPE_FULL full {not implemented}
  607. // Outputs:
  608. // M #V by #V mass matrix
  609. //
  610. // See also: adjacency_matrix
  611. //)igl_Qu8mg5v7";
  612. const char *__doc_igl_min_quad_with_fixed_precompute = R"igl_Qu8mg5v7(// Known Bugs: rows of Aeq **should probably** be linearly independent.
  613. // During precomputation, the rows of a Aeq are checked via QR. But in case
  614. // they're not then resulting probably will no longer be sparse: it will be
  615. // slow.
  616. //
  617. // MIN_QUAD_WITH_FIXED Minimize quadratic energy
  618. //
  619. // 0.5*Z'*A*Z + Z'*B + C with
  620. //
  621. // constraints that Z(known) = Y, optionally also subject to the constraints
  622. // Aeq*Z = Beq
  623. //
  624. // Templates:
  625. // T should be a eigen matrix primitive type like int or double
  626. // Inputs:
  627. // A n by n matrix of quadratic coefficients
  628. // known list of indices to known rows in Z
  629. // Y list of fixed values corresponding to known rows in Z
  630. // Aeq m by n list of linear equality constraint coefficients
  631. // pd flag specifying whether A(unknown,unknown) is positive definite
  632. // Outputs:
  633. // data factorization struct with all necessary information to solve
  634. // using min_quad_with_fixed_solve
  635. // Returns true on success, false on error
  636. //
  637. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  638. // secs, igl/min_quad_with_fixed.h 7.1 secs
  639. //)igl_Qu8mg5v7";
  640. const char *__doc_igl_min_quad_with_fixed_solve = R"igl_Qu8mg5v7(// Solves a system previously factored using min_quad_with_fixed_precompute
  641. //
  642. // Template:
  643. // T type of sparse matrix (e.g. double)
  644. // DerivedY type of Y (e.g. derived from VectorXd or MatrixXd)
  645. // DerivedZ type of Z (e.g. derived from VectorXd or MatrixXd)
  646. // Inputs:
  647. // data factorization struct with all necessary precomputation to solve
  648. // B n by 1 column of linear coefficients
  649. // Y b by 1 list of constant fixed values
  650. // Beq m by 1 list of linear equality constraint constant values
  651. // Outputs:
  652. // Z n by cols solution
  653. // sol #unknowns+#lagrange by cols solution to linear system
  654. // Returns true on success, false on error)igl_Qu8mg5v7";
  655. const char *__doc_igl_min_quad_with_fixed = R"igl_Qu8mg5v7(See min_quad_with_fixed for the documentation.)igl_Qu8mg5v7";
  656. const char *__doc_igl_n_polyvector = R"igl_Qu8mg5v7(// Inputs:
  657. // v0, v1 the two #3 by 1 vectors
  658. // normalized boolean, if false, then the vectors are normalized prior to the calculation
  659. // Output:
  660. // 3 by 3 rotation matrix that takes v0 to v1
  661. //)igl_Qu8mg5v7";
  662. const char *__doc_igl_parula = R"igl_Qu8mg5v7(// PARULA like MATLAB's parula
  663. //
  664. // Inputs:
  665. // m number of colors
  666. // Outputs:
  667. // J m by list of RGB colors between 0 and 1
  668. //
  669. // Wrapper for directly computing [r,g,b] values for a given factor f between
  670. // 0 and 1
  671. //
  672. // Inputs:
  673. // f factor determining color value as if 0 was min and 1 was max
  674. // Outputs:
  675. // r red value
  676. // g green value
  677. // b blue value)igl_Qu8mg5v7";
  678. const char *__doc_igl_per_corner_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  679. // Inputs:
  680. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  681. // F #F by 3 eigne Matrix of face (triangle) indices
  682. // corner_threshold threshold in degrees on sharp angles
  683. // Output:
  684. // CN #F*3 by 3 eigen Matrix of mesh vertex 3D normals, where the normal
  685. // for corner F(i,j) is at CN(i*3+j,:) )igl_Qu8mg5v7";
  686. const char *__doc_igl_per_edge_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  687. // Inputs:
  688. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  689. // F #F by 3 eigen Matrix of face (triangle) indices
  690. // weight weighting type
  691. // FN #F by 3 matrix of 3D face normals per face
  692. // Output:
  693. // N #2 by 3 matrix of mesh edge 3D normals per row
  694. // E #E by 2 matrix of edge indices per row
  695. // EMAP #E by 1 matrix of indices from all edges to E
  696. //)igl_Qu8mg5v7";
  697. const char *__doc_igl_per_face_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  698. // Inputs:
  699. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  700. // F #F by 3 eigen Matrix of face (triangle) indices
  701. // Z 3 vector normal given to faces with degenerate normal.
  702. // Output:
  703. // N #F by 3 eigen Matrix of mesh face (triangle) 3D normals
  704. //
  705. // Example:
  706. // // Give degenerate faces (1/3,1/3,1/3)^0.5
  707. // per_face_normals(V,F,Vector3d(1,1,1).normalized(),N);)igl_Qu8mg5v7";
  708. const char *__doc_igl_per_face_normals_stable = R"igl_Qu8mg5v7(// Special version where order of face indices is guaranteed not to effect
  709. // output.)igl_Qu8mg5v7";
  710. const char *__doc_igl_per_vertex_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  711. // Inputs:
  712. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  713. // F #F by 3 eigne Matrix of face (triangle) indices
  714. // weighting Weighting type
  715. // Output:
  716. // N #V by 3 eigen Matrix of mesh vertex 3D normals)igl_Qu8mg5v7";
  717. const char *__doc_igl_planarize_quad_mesh = R"igl_Qu8mg5v7(// Inputs:
  718. // Vin #V by 3 eigen Matrix of mesh vertex 3D positions
  719. // F #F by 4 eigen Matrix of face (quad) indices
  720. // maxIter maximum numbers of iterations
  721. // threshold minimum allowed threshold for non-planarity
  722. // Output:
  723. // Vout #V by 3 eigen Matrix of planar mesh vertex 3D positions
  724. //)igl_Qu8mg5v7";
  725. const char *__doc_igl_png_readPNG = R"igl_Qu8mg5v7(// Read an image from a .png file into 4 memory buffers
  726. //
  727. // Input:
  728. // png_file path to .png file
  729. // Output:
  730. // R,G,B,A texture channels
  731. // Returns true on success, false on failure
  732. //)igl_Qu8mg5v7";
  733. const char *__doc_igl_png_writePNG = R"igl_Qu8mg5v7(// Writes an image to a png file
  734. //
  735. // Input:
  736. // R,G,B,A texture channels
  737. // Output:
  738. // png_file path to .png file
  739. // Returns true on success, false on failure
  740. //)igl_Qu8mg5v7";
  741. const char *__doc_igl_point_mesh_squared_distance = R"igl_Qu8mg5v7(// Compute distances from a set of points P to a triangle mesh (V,F)
  742. //
  743. // Inputs:
  744. // P #P by 3 list of query point positions
  745. // V #V by 3 list of vertex positions
  746. // Ele #Ele by (3|2|1) list of (triangle|edge|point) indices
  747. // Outputs:
  748. // sqrD #P list of smallest squared distances
  749. // I #P list of primitive indices corresponding to smallest distances
  750. // C #P by 3 list of closest points
  751. //
  752. // Known bugs: This only computes distances to given primitivess. So
  753. // unreferenced vertices are ignored. However, degenerate primitives are
  754. // handled correctly: triangle [1 2 2] is treated as a segment [1 2], and
  755. // triangle [1 1 1] is treated as a point. So one _could_ add extra
  756. // combinatorially degenerate rows to Ele for all unreferenced vertices to
  757. // also get distances to points.)igl_Qu8mg5v7";
  758. const char *__doc_igl_polar_svd = R"igl_Qu8mg5v7(// Computes the polar decomposition (R,T) of a matrix A using SVD singular
  759. // value decomposition
  760. //
  761. // Inputs:
  762. // A 3 by 3 matrix to be decomposed
  763. // Outputs:
  764. // R 3 by 3 rotation matrix part of decomposition (**always rotataion**)
  765. // T 3 by 3 stretch matrix part of decomposition
  766. // U 3 by 3 left-singular vectors
  767. // S 3 by 1 singular values
  768. // V 3 by 3 right-singular vectors
  769. //
  770. //)igl_Qu8mg5v7";
  771. const char *__doc_igl_principal_curvature = R"igl_Qu8mg5v7(// Compute the principal curvature directions and magnitude of the given triangle mesh
  772. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  773. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  774. // Inputs:
  775. // V eigen matrix #V by 3
  776. // F #F by 3 list of mesh faces (must be triangles)
  777. // radius controls the size of the neighbourhood used, 1 = average edge lenght
  778. //
  779. // Outputs:
  780. // PD1 #V by 3 maximal curvature direction for each vertex.
  781. // PD2 #V by 3 minimal curvature direction for each vertex.
  782. // PV1 #V by 1 maximal curvature value for each vertex.
  783. // PV2 #V by 1 minimal curvature value for each vertex.
  784. //
  785. // See also: average_onto_faces, average_onto_vertices
  786. //
  787. // This function has been developed by: Nikolas De Giorgis, Luigi Rocca and Enrico Puppo.
  788. // The algorithm is based on:
  789. // Efficient Multi-scale Curvature and Crease Estimation
  790. // Daniele Panozzo, Enrico Puppo, Luigi Rocca
  791. // GraVisMa, 2010)igl_Qu8mg5v7";
  792. const char *__doc_igl_quad_planarity = R"igl_Qu8mg5v7(// Compute planarity of the faces of a quad mesh
  793. // Inputs:
  794. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  795. // F #F by 4 eigen Matrix of face (quad) indices
  796. // Output:
  797. // P #F by 1 eigen Matrix of mesh face (quad) planarities
  798. //)igl_Qu8mg5v7";
  799. const char *__doc_igl_randperm = R"igl_Qu8mg5v7(// Like matlab's randperm(n) but minus 1
  800. //
  801. // Inputs:
  802. // n number of elements
  803. // Outputs:
  804. // I n list of rand permutation of 0:n-1)igl_Qu8mg5v7";
  805. const char *__doc_igl_readDMAT = R"igl_Qu8mg5v7(See readDMAT for the documentation.)igl_Qu8mg5v7";
  806. const char *__doc_igl_readMESH = R"igl_Qu8mg5v7(// load a tetrahedral volume mesh from a .mesh file
  807. //
  808. // Templates:
  809. // Scalar type for positions and vectors (will be read as double and cast
  810. // to Scalar)
  811. // Index type for indices (will be read as int and cast to Index)
  812. // Input:
  813. // mesh_file_name path of .mesh file
  814. // Outputs:
  815. // V double matrix of vertex positions #V by 3
  816. // T #T list of tet indices into vertex positions
  817. // F #F list of face indices into vertex positions
  818. //
  819. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  820. const char *__doc_igl_readOBJ = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  821. // and texture coordinates. Mesh may have faces of any number of degree
  822. //
  823. // Templates:
  824. // Scalar type for positions and vectors (will be read as double and cast
  825. // to Scalar)
  826. // Index type for indices (will be read as int and cast to Index)
  827. // Inputs:
  828. // str path to .obj file
  829. // Outputs:
  830. // V double matrix of vertex positions #V by 3
  831. // TC double matrix of texture coordinats #TC by 2
  832. // N double matrix of corner normals #N by 3
  833. // F #F list of face indices into vertex positions
  834. // FTC #F list of face indices into vertex texture coordinates
  835. // FN #F list of face indices into vertex normals
  836. // Returns true on success, false on errors)igl_Qu8mg5v7";
  837. const char *__doc_igl_readOFF = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  838. // and texture coordinates. Mesh may have faces of any number of degree
  839. //
  840. // Templates:
  841. // Scalar type for positions and vectors (will be read as double and cast
  842. // to Scalar)
  843. // Index type for indices (will be read as int and cast to Index)
  844. // Inputs:
  845. // str path to .obj file
  846. // Outputs:
  847. // V double matrix of vertex positions #V by 3
  848. // F #F list of face indices into vertex positions
  849. // TC double matrix of texture coordinats #TC by 2
  850. // FTC #F list of face indices into vertex texture coordinates
  851. // N double matrix of corner normals #N by 3
  852. // FN #F list of face indices into vertex normals
  853. // Returns true on success, false on errors)igl_Qu8mg5v7";
  854. const char *__doc_igl_read_triangle_mesh = R"igl_Qu8mg5v7(// read mesh from an ascii file with automatic detection of file format.
  855. // supported: obj, off, stl, wrl, ply, mesh)
  856. //
  857. // Templates:
  858. // Scalar type for positions and vectors (will be read as double and cast
  859. // to Scalar)
  860. // Index type for indices (will be read as int and cast to Index)
  861. // Inputs:
  862. // str path to file
  863. // Outputs:
  864. // V eigen double matrix #V by 3
  865. // F eigen int matrix #F by 3
  866. // Returns true iff success)igl_Qu8mg5v7";
  867. const char *__doc_igl_rotate_vectors = R"igl_Qu8mg5v7(// Rotate the vectors V by A radiants on the tangent plane spanned by B1 and
  868. // B2
  869. //
  870. // Inputs:
  871. // V #V by 3 eigen Matrix of vectors
  872. // A #V eigen vector of rotation angles or a single angle to be applied
  873. // to all vectors
  874. // B1 #V by 3 eigen Matrix of base vector 1
  875. // B2 #V by 3 eigen Matrix of base vector 2
  876. //
  877. // Output:
  878. // Returns the rotated vectors
  879. //)igl_Qu8mg5v7";
  880. const char *__doc_igl_setdiff = R"igl_Qu8mg5v7(// Set difference of elements of matrices
  881. //
  882. // Inputs:
  883. // A m-long vector of indices
  884. // B n-long vector of indices
  885. // Outputs:
  886. // C (k<=m)-long vector of unique elements appearing in A but not in B
  887. // IA (k<=m)-long list of indices into A so that C = A(IA)
  888. //)igl_Qu8mg5v7";
  889. const char *__doc_igl_signed_distance = R"igl_Qu8mg5v7(// Computes signed distance to a mesh
  890. //
  891. // Inputs:
  892. // P #P by 3 list of query point positions
  893. // V #V by 3 list of vertex positions
  894. // F #F by ss list of triangle indices, ss should be 3 unless sign_type ==
  895. // SIGNED_DISTANCE_TYPE_UNSIGNED
  896. // sign_type method for computing distance _sign_ S
  897. // Outputs:
  898. // S #P list of smallest signed distances
  899. // I #P list of facet indices corresponding to smallest distances
  900. // C #P by 3 list of closest points
  901. // N #P by 3 list of closest normals (only set if
  902. // sign_type=SIGNED_DISTANCE_TYPE_PSEUDONORMAL)
  903. //
  904. // Known bugs: This only computes distances to triangles. So unreferenced
  905. // vertices and degenerate triangles are ignored.)igl_Qu8mg5v7";
  906. const char *__doc_igl_signed_distance_pseudonormal = R"igl_Qu8mg5v7(// Computes signed distance to mesh
  907. //
  908. // Inputs:
  909. // tree AABB acceleration tree (see AABB.h)
  910. // F #F by 3 list of triangle indices
  911. // FN #F by 3 list of triangle normals
  912. // VN #V by 3 list of vertex normals (ANGLE WEIGHTING)
  913. // EN #E by 3 list of edge normals (UNIFORM WEIGHTING)
  914. // EMAP #F*3 mapping edges in F to E
  915. // q Query point
  916. // Returns signed distance to mesh
  917. //)igl_Qu8mg5v7";
  918. const char *__doc_igl_signed_distance_winding_number = R"igl_Qu8mg5v7(// Inputs:
  919. // tree AABB acceleration tree (see cgal/point_mesh_squared_distance.h)
  920. // hier Winding number evaluation hierarchy
  921. // q Query point
  922. // Returns signed distance to mesh)igl_Qu8mg5v7";
  923. const char *__doc_igl_slice = R"igl_Qu8mg5v7(// Act like the matlab X(row_indices,col_indices) operator, where
  924. // row_indices, col_indices are non-negative integer indices.
  925. //
  926. // Inputs:
  927. // X m by n matrix
  928. // R list of row indices
  929. // C list of column indices
  930. // Output:
  931. // Y #R by #C matrix
  932. //
  933. // See also: slice_mask)igl_Qu8mg5v7";
  934. const char *__doc_igl_slice_into = R"igl_Qu8mg5v7(// Act like the matlab Y(row_indices,col_indices) = X
  935. //
  936. // Inputs:
  937. // X xm by xn rhs matrix
  938. // R list of row indices
  939. // C list of column indices
  940. // Y ym by yn lhs matrix
  941. // Output:
  942. // Y ym by yn lhs matrix, same as input but Y(R,C) = X)igl_Qu8mg5v7";
  943. const char *__doc_igl_slice_mask = R"igl_Qu8mg5v7(// Act like the matlab X(row_mask,col_mask) operator, where
  944. // row_mask, col_mask are non-negative integer indices.
  945. //
  946. // Inputs:
  947. // X m by n matrix
  948. // R m list of row bools
  949. // C n list of column bools
  950. // Output:
  951. // Y #trues-in-R by #trues-in-C matrix
  952. //
  953. // See also: slice_mask)igl_Qu8mg5v7";
  954. const char *__doc_igl_slice_tets = R"igl_Qu8mg5v7(// SLICE_TETS Slice through a tet mesh (V,T) along a given plane (via its
  955. // implicit equation).
  956. //
  957. // Inputs:
  958. // V #V by 3 list of tet mesh vertices
  959. // T #T by 4 list of tet indices into V
  960. // plane list of 4 coefficients in the plane equation: [x y z 1]'*plane = 0
  961. // Optional:
  962. // 'Manifold' followed by whether to stitch together triangles into a
  963. // manifold mesh {true}: results in more compact U but slightly slower.
  964. // Outputs:
  965. // U #U by 3 list of triangle mesh vertices along slice
  966. // G #G by 3 list of triangles indices into U
  967. // J #G list of indices into T revealing from which tet each faces comes
  968. // BC #U by #V list of barycentric coordinates (or more generally: linear
  969. // interpolation coordinates) so that U = BC*V
  970. // )igl_Qu8mg5v7";
  971. const char *__doc_igl_sortrows = R"igl_Qu8mg5v7(// Act like matlab's [Y,I] = sortrows(X)
  972. //
  973. // Templates:
  974. // DerivedX derived scalar type, e.g. MatrixXi or MatrixXd
  975. // DerivedI derived integer type, e.g. MatrixXi
  976. // Inputs:
  977. // X m by n matrix whose entries are to be sorted
  978. // ascending sort ascending (true, matlab default) or descending (false)
  979. // Outputs:
  980. // Y m by n matrix whose entries are sorted (**should not** be same
  981. // reference as X)
  982. // I m list of indices so that
  983. // Y = X(I,:);)igl_Qu8mg5v7";
  984. const char *__doc_igl_triangle_triangulate = R"igl_Qu8mg5v7(// Triangulate the interior of a polygon using the triangle library.
  985. //
  986. // Inputs:
  987. // V #V by 2 list of 2D vertex positions
  988. // E #E by 2 list of vertex ids forming unoriented edges of the boundary of the polygon
  989. // H #H by 2 coordinates of points contained inside holes of the polygon
  990. // flags string of options pass to triangle (see triangle documentation)
  991. // Outputs:
  992. // V2 #V2 by 2 coordinates of the vertives of the generated triangulation
  993. // F2 #F2 by 3 list of indices forming the faces of the generated triangulation
  994. //
  995. // TODO: expose the option to prevent Steiner points on the boundary
  996. //)igl_Qu8mg5v7";
  997. const char *__doc_igl_unique = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X)
  998. //
  999. // Templates:
  1000. // T comparable type T
  1001. // Inputs:
  1002. // A #A vector of type T
  1003. // Outputs:
  1004. // C #C vector of unique entries in A
  1005. // IA #C index vector so that C = A(IA);
  1006. // IC #A index vector so that A = C(IC);)igl_Qu8mg5v7";
  1007. const char *__doc_igl_unique_rows = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X,'rows')
  1008. //
  1009. // Templates:
  1010. // DerivedA derived scalar type, e.g. MatrixXi or MatrixXd
  1011. // DerivedIA derived integer type, e.g. MatrixXi
  1012. // DerivedIC derived integer type, e.g. MatrixXi
  1013. // Inputs:
  1014. // A m by n matrix whose entries are to unique'd according to rows
  1015. // Outputs:
  1016. // C #C vector of unique rows in A
  1017. // IA #C index vector so that C = A(IA,:);
  1018. // IC #A index vector so that A = C(IC,:);)igl_Qu8mg5v7";
  1019. const char *__doc_igl_unproject_onto_mesh = R"igl_Qu8mg5v7(// Unproject a screen location (using current opengl viewport, projection, and
  1020. // model view) to a 3D position _onto_ a given mesh, if the ray through the
  1021. // given screen location (x,y) _hits_ the mesh.
  1022. //
  1023. // Inputs:
  1024. // pos screen space coordinates
  1025. // model model matrix
  1026. // proj projection matrix
  1027. // viewport vieweport vector
  1028. // V #V by 3 list of mesh vertex positions
  1029. // F #F by 3 list of mesh triangle indices into V
  1030. // Outputs:
  1031. // fid id of the first face hit
  1032. // bc barycentric coordinates of hit
  1033. // Returns true if there's a hit)igl_Qu8mg5v7";
  1034. const char *__doc_igl_upsample = R"igl_Qu8mg5v7(// Subdivide a mesh without moving vertices: loop subdivision but odd
  1035. // vertices stay put and even vertices are just edge midpoints
  1036. //
  1037. // Templates:
  1038. // MatV matrix for vertex positions, e.g. MatrixXd
  1039. // MatF matrix for vertex positions, e.g. MatrixXi
  1040. // Inputs:
  1041. // V #V by dim mesh vertices
  1042. // F #F by 3 mesh triangles
  1043. // Outputs:
  1044. // NV new vertex positions, V is guaranteed to be at top
  1045. // NF new list of face indices
  1046. //
  1047. // NOTE: V should not be the same as NV,
  1048. // NOTE: F should not be the same as NF, use other proto
  1049. //
  1050. // Known issues:
  1051. // - assumes (V,F) is edge-manifold.)igl_Qu8mg5v7";
  1052. const char *__doc_igl_winding_number = R"igl_Qu8mg5v7(// WINDING_NUMBER Compute the sum of solid angles of a triangle/tetrahedron
  1053. // described by points (vectors) V
  1054. //
  1055. // Templates:
  1056. // dim dimension of input
  1057. // Inputs:
  1058. // V n by 3 list of vertex positions
  1059. // F #F by 3 list of triangle indices, minimum index is 0
  1060. // O no by 3 list of origin positions
  1061. // Outputs:
  1062. // S no by 1 list of winding numbers
  1063. //
  1064. // 3d)igl_Qu8mg5v7";
  1065. const char *__doc_igl_winding_number_3 = R"igl_Qu8mg5v7(// Inputs:
  1066. // V pointer to array containing #V by 3 vertex positions along rows,
  1067. // given in column major order
  1068. // n number of mesh vertices
  1069. // F pointer to array containing #F by 3 face indices along rows,
  1070. // given in column major order
  1071. // m number of faces
  1072. // O pointer to array containing #O by 3 query positions along rows,
  1073. // given in column major order
  1074. // no number of origins
  1075. // Outputs:
  1076. // S no by 1 list of winding numbers)igl_Qu8mg5v7";
  1077. const char *__doc_igl_winding_number_2 = R"igl_Qu8mg5v7(//// Only one evaluation origin
  1078. //template <typename DerivedF>
  1079. //IGL_INLINE void winding_number_3(
  1080. // const double * V,
  1081. // const int n,
  1082. // const DerivedF * F,
  1083. // const int m,
  1084. // const double * O,
  1085. // double * S);
  1086. // 2d)igl_Qu8mg5v7";
  1087. const char *__doc_igl_writeMESH = R"igl_Qu8mg5v7(// save a tetrahedral volume mesh to a .mesh file
  1088. //
  1089. // Templates:
  1090. // Scalar type for positions and vectors (will be cast as double)
  1091. // Index type for indices (will be cast to int)
  1092. // Input:
  1093. // mesh_file_name path of .mesh file
  1094. // V double matrix of vertex positions #V by 3
  1095. // T #T list of tet indices into vertex positions
  1096. // F #F list of face indices into vertex positions
  1097. //
  1098. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  1099. const char *__doc_igl_writeOBJ = R"igl_Qu8mg5v7(// Write a mesh in an ascii obj file
  1100. // Inputs:
  1101. // str path to outputfile
  1102. // V #V by 3 mesh vertex positions
  1103. // F #F by 3|4 mesh indices into V
  1104. // CN #CN by 3 normal vectors
  1105. // FN #F by 3|4 corner normal indices into CN
  1106. // TC #TC by 2|3 texture coordinates
  1107. // FTC #F by 3|4 corner texture coord indices into TC
  1108. // Returns true on success, false on error)igl_Qu8mg5v7";