305_QuadraticProgramming.py 2.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798
  1. import sys, os
  2. # Add the igl library to the modules search path
  3. sys.path.insert(0, os.getcwd() + "/../")
  4. import pyigl as igl
  5. from shared import TUTORIAL_SHARED_PATH, check_dependencies
  6. dependencies = ["viewer"]
  7. check_dependencies(dependencies)
  8. b = igl.eigen.MatrixXi()
  9. B = igl.eigen.MatrixXd()
  10. bc = igl.eigen.MatrixXd()
  11. lx = igl.eigen.MatrixXd()
  12. ux = igl.eigen.MatrixXd()
  13. Beq = igl.eigen.MatrixXd()
  14. Bieq = igl.eigen.MatrixXd()
  15. Z = igl.eigen.MatrixXd()
  16. Q = igl.eigen.SparseMatrixd()
  17. Aeq = igl.eigen.SparseMatrixd()
  18. Aieq = igl.eigen.SparseMatrixd()
  19. def solve(viewer):
  20. global Q, B, b, bc, Aeq, Beq, Aieq, Bieq, lx, ux, Z
  21. params = igl.active_set_params()
  22. params.max_iter = 8
  23. igl.active_set(Q, B, b, bc, Aeq, Beq, Aieq, Bieq, lx, ux, params, Z)
  24. C = igl.eigen.MatrixXd()
  25. igl.jet(Z, 0, 1, C)
  26. viewer.data.set_colors(C)
  27. def key_down(viewer, key, mod):
  28. global Beq, solve
  29. if key == ord('.'):
  30. Beq[0, 0] = Beq[0, 0] * 2.0
  31. solve(viewer)
  32. return True
  33. elif key == ord(','):
  34. Beq[0, 0] = Beq[0, 0] / 2.0
  35. solve(viewer)
  36. return True
  37. elif key == ord(' '):
  38. solve(viewer)
  39. return True
  40. return False
  41. V = igl.eigen.MatrixXd()
  42. F = igl.eigen.MatrixXi()
  43. igl.readOFF(TUTORIAL_SHARED_PATH + "cheburashka.off", V, F)
  44. # Plot the mesh
  45. viewer = igl.viewer.Viewer()
  46. viewer.data.set_mesh(V, F)
  47. viewer.core.show_lines = False
  48. viewer.callback_key_down = key_down
  49. # One fixed point on belly
  50. b = igl.eigen.MatrixXi([[2556]])
  51. bc = igl.eigen.MatrixXd([[1]])
  52. # Construct Laplacian and mass matrix
  53. L = igl.eigen.SparseMatrixd()
  54. M = igl.eigen.SparseMatrixd()
  55. Minv = igl.eigen.SparseMatrixd()
  56. igl.cotmatrix(V, F, L)
  57. igl.massmatrix(V, F, igl.MASSMATRIX_TYPE_VORONOI, M)
  58. igl.invert_diag(M, Minv)
  59. # Bi-Laplacian
  60. Q = L.transpose() * (Minv * L)
  61. # Zero linear term
  62. B = igl.eigen.MatrixXd.Zero(V.rows(), 1)
  63. # Lower and upper bound
  64. lx = igl.eigen.MatrixXd.Zero(V.rows(), 1)
  65. ux = igl.eigen.MatrixXd.Ones(V.rows(), 1)
  66. # Equality constraint constrain solution to sum to 1
  67. Beq = igl.eigen.MatrixXd([[0.08]])
  68. Aeq = M.diagonal().sparseView().transpose()
  69. # (Empty inequality constraints)
  70. solve(viewer)
  71. print("Press '.' to increase scale and resolve.")
  72. print("Press ',' to decrease scale and resolve.")
  73. viewer.launch()