1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- import sys, os
- # Add the igl library to the modules search path
- sys.path.insert(0, os.getcwd() + "/../")
- import pyigl as igl
- from shared import TUTORIAL_SHARED_PATH, check_dependencies
- dependencies = ["viewer"]
- check_dependencies(dependencies)
- b = igl.eigen.MatrixXi()
- B = igl.eigen.MatrixXd()
- bc = igl.eigen.MatrixXd()
- lx = igl.eigen.MatrixXd()
- ux = igl.eigen.MatrixXd()
- Beq = igl.eigen.MatrixXd()
- Bieq = igl.eigen.MatrixXd()
- Z = igl.eigen.MatrixXd()
- Q = igl.eigen.SparseMatrixd()
- Aeq = igl.eigen.SparseMatrixd()
- Aieq = igl.eigen.SparseMatrixd()
- def solve(viewer):
- global Q, B, b, bc, Aeq, Beq, Aieq, Bieq, lx, ux, Z
- params = igl.active_set_params()
- params.max_iter = 8
- igl.active_set(Q, B, b, bc, Aeq, Beq, Aieq, Bieq, lx, ux, params, Z)
- C = igl.eigen.MatrixXd()
- igl.jet(Z, 0, 1, C)
- viewer.data.set_colors(C)
- def key_down(viewer, key, mod):
- global Beq, solve
- if key == ord('.'):
- Beq[0, 0] = Beq[0, 0] * 2.0
- solve(viewer)
- return True
- elif key == ord(','):
- Beq[0, 0] = Beq[0, 0] / 2.0
- solve(viewer)
- return True
- elif key == ord(' '):
- solve(viewer)
- return True
- return False
- V = igl.eigen.MatrixXd()
- F = igl.eigen.MatrixXi()
- igl.readOFF(TUTORIAL_SHARED_PATH + "cheburashka.off", V, F)
- # Plot the mesh
- viewer = igl.viewer.Viewer()
- viewer.data.set_mesh(V, F)
- viewer.core.show_lines = False
- viewer.callback_key_down = key_down
- # One fixed point on belly
- b = igl.eigen.MatrixXi([[2556]])
- bc = igl.eigen.MatrixXd([[1]])
- # Construct Laplacian and mass matrix
- L = igl.eigen.SparseMatrixd()
- M = igl.eigen.SparseMatrixd()
- Minv = igl.eigen.SparseMatrixd()
- igl.cotmatrix(V, F, L)
- igl.massmatrix(V, F, igl.MASSMATRIX_TYPE_VORONOI, M)
- igl.invert_diag(M, Minv)
- # Bi-Laplacian
- Q = L.transpose() * (Minv * L)
- # Zero linear term
- B = igl.eigen.MatrixXd.Zero(V.rows(), 1)
- # Lower and upper bound
- lx = igl.eigen.MatrixXd.Zero(V.rows(), 1)
- ux = igl.eigen.MatrixXd.Ones(V.rows(), 1)
- # Equality constraint constrain solution to sum to 1
- Beq = igl.eigen.MatrixXd([[0.08]])
- Aeq = M.diagonal().sparseView().transpose()
- # (Empty inequality constraints)
- solve(viewer)
- print("Press '.' to increase scale and resolve.")
- print("Press ',' to decrease scale and resolve.")
- viewer.launch()
|