507_PolyVectorField.py 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136
  1. import sys, os
  2. import random
  3. from math import cos,sin,pi
  4. # Add the igl library to the modules search path
  5. sys.path.insert(0, os.getcwd() + "/../")
  6. import pyigl as igl
  7. from shared import TUTORIAL_SHARED_PATH, check_dependencies
  8. dependencies = ["embree", "viewer"]
  9. check_dependencies(dependencies)
  10. # Input mesh
  11. V = igl.eigen.MatrixXd()
  12. F = igl.eigen.MatrixXi()
  13. # Per face bases
  14. B1 = igl.eigen.MatrixXd()
  15. B2 = igl.eigen.MatrixXd()
  16. B3 = igl.eigen.MatrixXd()
  17. # Face barycenters
  18. B = igl.eigen.MatrixXd()
  19. # Scale for visualizing the fields
  20. global_scale = 1
  21. # Random length factor
  22. rand_factor = 5
  23. samples = igl.eigen.MatrixXi()
  24. def readSamples(fname):
  25. samples = igl.eigen.MatrixXi()
  26. numSamples = 0
  27. fp = open(fname, 'r')
  28. numSamples = int(fp.readline())
  29. samples.resize(numSamples,1)
  30. for i in range(0,numSamples):
  31. samples[i] = int(fp.readline())
  32. fp.close()
  33. return samples
  34. # Create a random set of tangent vectors
  35. def random_constraints(b1, b2, n):
  36. r = igl.eigen.MatrixXd(1,n*3)
  37. for i in range(0,n):
  38. a = random.random()*2*pi
  39. s = 1 + random.random() * rand_factor
  40. t = s * (cos(a) * b1 + sin(a) * b2)
  41. r.setBlock(0,i*3,1,3,t)
  42. return r
  43. def key_down(viewer, key, modifier):
  44. if key < ord('1') or key > ord('8'):
  45. return False
  46. viewer.data.lines.resize(0,9)
  47. num = key - ord('0')
  48. # Interpolate
  49. print("Interpolating " + repr(num * 2) + "-PolyVector field")
  50. b = igl.eigen.MatrixXi([[4550, 2321, 5413, 5350]]).transpose()
  51. bc = igl.eigen.MatrixXd(b.size(),num*3)
  52. for i in range(0,b.size()):
  53. t = random_constraints(B1.row(b[i]),B2.row(b[i]),num)
  54. bc.setRow(i,t)
  55. # Interpolated PolyVector field
  56. pvf = igl.eigen.MatrixXd()
  57. igl.n_polyvector(V, F, b, bc, pvf)
  58. # Highlight in red the constrained faces
  59. C = igl.eigen.MatrixXd.Constant(F.rows(),3,1)
  60. for i in range(0,b.size()):
  61. C.setRow(b[i],igl.eigen.MatrixXd([[1, 0, 0]]))
  62. viewer.data.set_colors(C)
  63. for n in range(0,num):
  64. VF = igl.eigen.MatrixXd.Zero(F.rows(),3)
  65. for i in range(0,b.size()):
  66. VF.setRow(b[i],bc.block(i,n*3,1,3))
  67. for i in range(0,samples.rows()):
  68. VF.setRow(samples[i],pvf.block(samples[i],n*3,1,3))
  69. c = VF.rowwiseNorm()
  70. C2 = igl.eigen.MatrixXd()
  71. igl.jet(c,1,1+rand_factor,C2)
  72. viewer.data.add_edges(B - global_scale*VF, B + global_scale*VF , C2)
  73. return False
  74. # Load a mesh in OBJ format
  75. igl.readOBJ("../../tutorial/shared/lilium.obj", V, F)
  76. samples = readSamples("../../tutorial/shared/lilium.samples.0.2")
  77. # Compute local basis for faces
  78. igl.local_basis(V,F,B1,B2,B3)
  79. # Compute face barycenters
  80. igl.barycenter(V, F, B)
  81. # Compute scale for visualizing fields
  82. global_scale = 0.2*igl.avg_edge_length(V, F)
  83. # Make the example deterministic
  84. random.seed(0)
  85. viewer = igl.viewer.Viewer()
  86. viewer.data.set_mesh(V, F)
  87. viewer.callback_key_down = key_down
  88. viewer.core.show_lines = False
  89. key_down(viewer,ord('2'),0)
  90. viewer.launch()