py_doc.cpp 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233
  1. const char *__doc_igl_active_set = R"igl_Qu8mg5v7(// Known Bugs: rows of [Aeq;Aieq] **must** be linearly independent. Should be
  2. // using QR decomposition otherwise:
  3. // http://www.okstate.edu/sas/v8/sashtml/ormp/chap5/sect32.htm
  4. //
  5. // ACTIVE_SET Minimize quadratic energy
  6. //
  7. // 0.5*Z'*A*Z + Z'*B + C with constraints
  8. //
  9. // that Z(known) = Y, optionally also subject to the constraints Aeq*Z = Beq,
  10. // and further optionally subject to the linear inequality constraints that
  11. // Aieq*Z <= Bieq and constant inequality constraints lx <= x <= ux
  12. //
  13. // Inputs:
  14. // A n by n matrix of quadratic coefficients
  15. // B n by 1 column of linear coefficients
  16. // known list of indices to known rows in Z
  17. // Y list of fixed values corresponding to known rows in Z
  18. // Aeq meq by n list of linear equality constraint coefficients
  19. // Beq meq by 1 list of linear equality constraint constant values
  20. // Aieq mieq by n list of linear inequality constraint coefficients
  21. // Bieq mieq by 1 list of linear inequality constraint constant values
  22. // lx n by 1 list of lower bounds [] implies -Inf
  23. // ux n by 1 list of upper bounds [] implies Inf
  24. // params struct of additional parameters (see below)
  25. // Z if not empty, is taken to be an n by 1 list of initial guess values
  26. // (see output)
  27. // Outputs:
  28. // Z n by 1 list of solution values
  29. // Returns true on success, false on error
  30. //
  31. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  32. // secs, igl/min_quad_with_fixed.h 7.1 secs
  33. //)igl_Qu8mg5v7";
  34. const char *__doc_igl_arap_precomputation = R"igl_Qu8mg5v7(// Compute necessary information to start using an ARAP deformation
  35. //
  36. // Inputs:
  37. // V #V by dim list of mesh positions
  38. // F #F by simplex-size list of triangle|tet indices into V
  39. // dim dimension being used at solve time. For deformation usually dim =
  40. // V.cols(), for surface parameterization V.cols() = 3 and dim = 2
  41. // b #b list of "boundary" fixed vertex indices into V
  42. // Outputs:
  43. // data struct containing necessary precomputation)igl_Qu8mg5v7";
  44. const char *__doc_igl_arap_solve = R"igl_Qu8mg5v7(// Inputs:
  45. // bc #b by dim list of boundary conditions
  46. // data struct containing necessary precomputation and parameters
  47. // U #V by dim initial guess)igl_Qu8mg5v7";
  48. const char *__doc_igl_avg_edge_length = R"igl_Qu8mg5v7(// Compute the average edge length for the given triangle mesh
  49. // Templates:
  50. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  51. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  52. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  53. // Inputs:
  54. // V eigen matrix #V by 3
  55. // F #F by simplex-size list of mesh faces (must be simplex)
  56. // Outputs:
  57. // l average edge length
  58. //
  59. // See also: adjacency_matrix)igl_Qu8mg5v7";
  60. const char *__doc_igl_barycenter = R"igl_Qu8mg5v7(// Computes the barycenter of every simplex
  61. //
  62. // Inputs:
  63. // V #V x dim matrix of vertex coordinates
  64. // F #F x simplex_size matrix of indices of simplex corners into V
  65. // Output:
  66. // BC #F x dim matrix of 3d vertices
  67. //)igl_Qu8mg5v7";
  68. const char *__doc_igl_barycentric_coordinates = R"igl_Qu8mg5v7(// Compute barycentric coordinates in a tet
  69. //
  70. // Inputs:
  71. // P #P by 3 Query points in 3d
  72. // A #P by 3 Tet corners in 3d
  73. // B #P by 3 Tet corners in 3d
  74. // C #P by 3 Tet corners in 3d
  75. // D #P by 3 Tet corners in 3d
  76. // Outputs:
  77. // L #P by 4 list of barycentric coordinates
  78. // )igl_Qu8mg5v7";
  79. const char *__doc_igl_barycentric_to_global = R"igl_Qu8mg5v7(// Converts barycentric coordinates in the embree form to 3D coordinates
  80. // Embree stores barycentric coordinates as triples: fid, bc1, bc2
  81. // fid is the id of a face, bc1 is the displacement of the point wrt the
  82. // first vertex v0 and the edge v1-v0. Similarly, bc2 is the displacement
  83. // wrt v2-v0.
  84. //
  85. // Input:
  86. // V: #Vx3 Vertices of the mesh
  87. // F: #Fxe Faces of the mesh
  88. // bc: #Xx3 Barycentric coordinates, one row per point
  89. //
  90. // Output:
  91. // #X: #Xx3 3D coordinates of all points in bc
  92. // )igl_Qu8mg5v7";
  93. const char *__doc_igl_boundary_facets = R"igl_Qu8mg5v7(// BOUNDARY_FACETS Determine boundary faces (edges) of tetrahedra (triangles)
  94. // stored in T (analogous to qptoolbox's `outline` and `boundary_faces`).
  95. //
  96. // Templates:
  97. // IntegerT integer-value: e.g. int
  98. // IntegerF integer-value: e.g. int
  99. // Input:
  100. // T tetrahedron (triangle) index list, m by 4 (3), where m is the number of tetrahedra
  101. // Output:
  102. // F list of boundary faces, n by 3 (2), where n is the number of boundary faces
  103. //
  104. //)igl_Qu8mg5v7";
  105. const char *__doc_igl_boundary_loop = R"igl_Qu8mg5v7(// Compute list of ordered boundary loops for a manifold mesh.
  106. //
  107. // Templates:
  108. // Index index type
  109. // Inputs:
  110. // F #V by dim list of mesh faces
  111. // Outputs:
  112. // L list of loops where L[i] = ordered list of boundary vertices in loop i
  113. //)igl_Qu8mg5v7";
  114. const char *__doc_igl_cat = R"igl_Qu8mg5v7(// Perform concatenation of a two matrices along a single dimension
  115. // If dim == 1, then C = [A;B]. If dim == 2 then C = [A B]
  116. //
  117. // Template:
  118. // Scalar scalar data type for sparse matrices like double or int
  119. // Mat matrix type for all matrices (e.g. MatrixXd, SparseMatrix)
  120. // MatC matrix type for ouput matrix (e.g. MatrixXd) needs to support
  121. // resize
  122. // Inputs:
  123. // A first input matrix
  124. // B second input matrix
  125. // dim dimension along which to concatenate, 0 or 1
  126. // Outputs:
  127. // C output matrix
  128. // )igl_Qu8mg5v7";
  129. const char *__doc_igl_collapse_edge = R"igl_Qu8mg5v7(See collapse_edge for the documentation.)igl_Qu8mg5v7";
  130. const char *__doc_igl_colon = R"igl_Qu8mg5v7(// Colon operator like matlab's colon operator. Enumerats values between low
  131. // and hi with step step.
  132. // Templates:
  133. // L should be a eigen matrix primitive type like int or double
  134. // S should be a eigen matrix primitive type like int or double
  135. // H should be a eigen matrix primitive type like int or double
  136. // T should be a eigen matrix primitive type like int or double
  137. // Inputs:
  138. // low starting value if step is valid then this is *always* the first
  139. // element of I
  140. // step step difference between sequential elements returned in I,
  141. // remember this will be cast to template T at compile time. If low<hi
  142. // then step must be positive. If low>hi then step must be negative.
  143. // Otherwise I will be set to empty.
  144. // hi ending value, if (hi-low)%step is zero then this will be the last
  145. // element in I. If step is positive there will be no elements greater
  146. // than hi, vice versa if hi<low
  147. // Output:
  148. // I list of values from low to hi with step size step)igl_Qu8mg5v7";
  149. const char *__doc_igl_comb_cross_field = R"igl_Qu8mg5v7(// Inputs:
  150. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  151. // F #F by 4 eigen Matrix of face (quad) indices
  152. // PD1in #F by 3 eigen Matrix of the first per face cross field vector
  153. // PD2in #F by 3 eigen Matrix of the second per face cross field vector
  154. // Output:
  155. // PD1out #F by 3 eigen Matrix of the first combed cross field vector
  156. // PD2out #F by 3 eigen Matrix of the second combed cross field vector
  157. //)igl_Qu8mg5v7";
  158. const char *__doc_igl_comb_frame_field = R"igl_Qu8mg5v7(// Inputs:
  159. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  160. // F #F by 4 eigen Matrix of face (quad) indices
  161. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  162. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  163. // BIS1_combed #F by 3 eigen Matrix of the first combed bisector field vector
  164. // BIS2_combed #F by 3 eigen Matrix of the second combed bisector field vector
  165. // Output:
  166. // PD1_combed #F by 3 eigen Matrix of the first combed cross field vector
  167. // PD2_combed #F by 3 eigen Matrix of the second combed cross field vector
  168. //)igl_Qu8mg5v7";
  169. const char *__doc_igl_compute_frame_field_bisectors = R"igl_Qu8mg5v7(// Compute bisectors of a frame field defined on mesh faces
  170. // Inputs:
  171. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  172. // F #F by 3 eigen Matrix of face (triangle) indices
  173. // B1 #F by 3 eigen Matrix of face (triangle) base vector 1
  174. // B2 #F by 3 eigen Matrix of face (triangle) base vector 2
  175. // PD1 #F by 3 eigen Matrix of the first per face frame field vector
  176. // PD2 #F by 3 eigen Matrix of the second per face frame field vector
  177. // Output:
  178. // BIS1 #F by 3 eigen Matrix of the first per face frame field bisector
  179. // BIS2 #F by 3 eigen Matrix of the second per face frame field bisector
  180. //)igl_Qu8mg5v7";
  181. const char *__doc_igl_copyleft_cgal_mesh_boolean = R"igl_Qu8mg5v7(// MESH_BOOLEAN Compute boolean csg operations on "solid", consistently
  182. // oriented meshes.
  183. //
  184. // Inputs:
  185. // VA #VA by 3 list of vertex positions of first mesh
  186. // FA #FA by 3 list of triangle indices into VA
  187. // VB #VB by 3 list of vertex positions of second mesh
  188. // FB #FB by 3 list of triangle indices into VB
  189. // type type of boolean operation
  190. // Outputs:
  191. // VC #VC by 3 list of vertex positions of boolean result mesh
  192. // FC #FC by 3 list of triangle indices into VC
  193. // J #FC list of indices into [FA;FA.rows()+FB] revealing "birth" facet
  194. // Returns true if inputs induce a piecewise constant winding number
  195. // field and type is valid
  196. //
  197. // See also: mesh_boolean_cork, intersect_other,
  198. // remesh_self_intersections)igl_Qu8mg5v7";
  199. const char *__doc_igl_copyleft_cgal_remesh_self_intersections = R"igl_Qu8mg5v7(// Given a triangle mesh (V,F) compute a new mesh (VV,FF) which is the same
  200. // as (V,F) except that any self-intersecting triangles in (V,F) have been
  201. // subdivided (new vertices and face created) so that the self-intersection
  202. // contour lies exactly on edges in (VV,FF). New vertices will appear in
  203. // original faces or on original edges. New vertices on edges are "merged"
  204. // only across original faces sharing that edge. This means that if the input
  205. // triangle mesh is a closed manifold the output will be too.
  206. //
  207. // Inputs:
  208. // V #V by 3 list of vertex positions
  209. // F #F by 3 list of triangle indices into V
  210. // params struct of optional parameters
  211. // Outputs:
  212. // VV #VV by 3 list of vertex positions
  213. // FF #FF by 3 list of triangle indices into VV
  214. // IF #intersecting face pairs by 2 list of intersecting face pairs,
  215. // indexing F
  216. // J #FF list of indices into F denoting birth triangle
  217. // IM #VV list of indices into VV of unique vertices.
  218. //
  219. // Known bugs: If an existing edge in (V,F) lies exactly on another face then
  220. // any resulting additional vertices along that edge may not get properly
  221. // connected so that the output mesh has the same global topology. This is
  222. // because
  223. //
  224. // Example:
  225. // // resolve intersections
  226. // igl::copyleft::cgal::remesh_self_intersections(V,F,params,VV,FF,IF,J,IM);
  227. // // _apply_ duplicate vertex mapping IM to FF
  228. // for_each(FF.data(),FF.data()+FF.size(),[&IM](int & a){a=IM(a);});
  229. // // remove any vertices now unreferenced after duplicate mapping.
  230. // igl::remove_unreferenced(VV,FF,SV,SF,UIM);
  231. // // Now (SV,SF) is ready to extract outer hull
  232. // igl::copyleft::cgal::outer_hull(SV,SF,G,J,flip);)igl_Qu8mg5v7";
  233. const char *__doc_igl_copyleft_comiso_miq = R"igl_Qu8mg5v7(// Inputs:
  234. // V #V by 3 list of mesh vertex 3D positions
  235. // F #F by 3 list of faces indices in V
  236. // PD1 #V by 3 first line of the Jacobian per triangle
  237. // PD2 #V by 3 second line of the Jacobian per triangle
  238. // (optional, if empty it will be a vector in the tangent plane orthogonal to PD1)
  239. // scale global scaling for the gradient (controls the quads resolution)
  240. // stiffness weight for the stiffness iterations
  241. // direct_round greedily round all integer variables at once (greatly improves optimization speed but lowers quality)
  242. // iter stiffness iterations (0 = no stiffness)
  243. // local_iter number of local iterations for the integer rounding
  244. // do_round enables the integer rounding (disabling it could be useful for debugging)
  245. // round_vertices id of additional vertices that should be snapped to integer coordinates
  246. // hard_features #H by 2 list of pairs of vertices that belongs to edges that should be snapped to integer coordinates
  247. //
  248. // Output:
  249. // UV #UV by 2 list of vertices in 2D
  250. // FUV #FUV by 3 list of face indices in UV
  251. //
  252. // TODO: rename the parameters name in the cpp consistenly
  253. // improve the handling of hard_features, right now it might fail in difficult cases)igl_Qu8mg5v7";
  254. const char *__doc_igl_copyleft_comiso_nrosy = R"igl_Qu8mg5v7(// Generate a N-RoSy field from a sparse set of constraints
  255. //
  256. // Inputs:
  257. // V #V by 3 list of mesh vertex coordinates
  258. // F #F by 3 list of mesh faces (must be triangles)
  259. // b #B by 1 list of constrained face indices
  260. // bc #B by 3 list of representative vectors for the constrained
  261. // faces
  262. // b_soft #S by 1 b for soft constraints
  263. // w_soft #S by 1 weight for the soft constraints (0-1)
  264. // bc_soft #S by 3 bc for soft constraints
  265. // N the degree of the N-RoSy vector field
  266. // soft the strenght of the soft contraints w.r.t. smoothness
  267. // (0 -> smoothness only, 1->constraints only)
  268. // Outputs:
  269. // R #F by 3 the representative vectors of the interpolated field
  270. // S #V by 1 the singularity index for each vertex (0 = regular))igl_Qu8mg5v7";
  271. const char *__doc_igl_copyleft_marching_cubes = R"igl_Qu8mg5v7(// marching_cubes( values, points, x_res, y_res, z_res, vertices, faces )
  272. //
  273. // performs marching cubes reconstruction on the grid defined by values, and
  274. // points, and generates vertices and faces
  275. //
  276. // Input:
  277. // values #number_of_grid_points x 1 array -- the scalar values of an
  278. // implicit function defined on the grid points (<0 in the inside of the
  279. // surface, 0 on the border, >0 outside)
  280. // points #number_of_grid_points x 3 array -- 3-D positions of the grid
  281. // points, ordered in x,y,z order:
  282. // points[index] = the point at (x,y,z) where :
  283. // x = (index % (xres -1),
  284. // y = (index / (xres-1)) %(yres-1),
  285. // z = index / (xres -1) / (yres -1) ).
  286. // where x,y,z index x, y, z dimensions
  287. // i.e. index = x + y*xres + z*xres*yres
  288. // xres resolutions of the grid in x dimension
  289. // yres resolutions of the grid in y dimension
  290. // zres resolutions of the grid in z dimension
  291. // Output:
  292. // vertices #V by 3 list of mesh vertex positions
  293. // faces #F by 3 list of mesh triangle indices
  294. //)igl_Qu8mg5v7";
  295. const char *__doc_igl_copyleft_swept_volume = R"igl_Qu8mg5v7(// Compute the surface of the swept volume of a solid object with surface
  296. // (V,F) mesh under going rigid motion.
  297. //
  298. // Inputs:
  299. // V #V by 3 list of mesh positions in reference pose
  300. // F #F by 3 list of mesh indices into V
  301. // transform function handle so that transform(t) returns the rigid
  302. // transformation at time t∈[0,1]
  303. // steps number of time steps: steps=3 --> t∈{0,0.5,1}
  304. // grid_res number of grid cells on the longest side containing the
  305. // motion (isolevel+1 cells will also be added on each side as padding)
  306. // isolevel distance level to be contoured as swept volume
  307. // Outputs:
  308. // SV #SV by 3 list of mesh positions of the swept surface
  309. // SF #SF by 3 list of mesh faces into SV)igl_Qu8mg5v7";
  310. const char *__doc_igl_copyleft_tetgen_tetrahedralize = R"igl_Qu8mg5v7(// Mesh the interior of a surface mesh (V,F) using tetgen
  311. //
  312. // Inputs:
  313. // V #V by 3 vertex position list
  314. // F #F list of polygon face indices into V (0-indexed)
  315. // switches string of tetgen options (See tetgen documentation) e.g.
  316. // "pq1.414a0.01" tries to mesh the interior of a given surface with
  317. // quality and area constraints
  318. // "" will mesh the convex hull constrained to pass through V (ignores F)
  319. // Outputs:
  320. // TV #V by 3 vertex position list
  321. // TT #T by 4 list of tet face indices
  322. // TF #F by 3 list of triangle face indices
  323. // Returns status:
  324. // 0 success
  325. // 1 tetgen threw exception
  326. // 2 tetgen did not crash but could not create any tets (probably there are
  327. // holes, duplicate faces etc.)
  328. // -1 other error)igl_Qu8mg5v7";
  329. const char *__doc_igl_cotmatrix = R"igl_Qu8mg5v7(// Constructs the cotangent stiffness matrix (discrete laplacian) for a given
  330. // mesh (V,F).
  331. //
  332. // Templates:
  333. // DerivedV derived type of eigen matrix for V (e.g. derived from
  334. // MatrixXd)
  335. // DerivedF derived type of eigen matrix for F (e.g. derived from
  336. // MatrixXi)
  337. // Scalar scalar type for eigen sparse matrix (e.g. double)
  338. // Inputs:
  339. // V #V by dim list of mesh vertex positions
  340. // F #F by simplex_size list of mesh faces (must be triangles)
  341. // Outputs:
  342. // L #V by #V cotangent matrix, each row i corresponding to V(i,:)
  343. //
  344. // See also: adjacency_matrix
  345. //
  346. // Note: This Laplacian uses the convention that diagonal entries are
  347. // **minus** the sum of off-diagonal entries. The diagonal entries are
  348. // therefore in general negative and the matrix is **negative** semi-definite
  349. // (immediately, -L is **positive** semi-definite)
  350. //
  351. // Known bugs: off by 1e-16 on regular grid. I think its a problem of
  352. // arithmetic order in cotmatrix_entries.h: C(i,e) = (arithmetic)/dblA/4)igl_Qu8mg5v7";
  353. const char *__doc_igl_covariance_scatter_matrix = R"igl_Qu8mg5v7(// Construct the covariance scatter matrix for a given arap energy
  354. // Inputs:
  355. // V #V by Vdim list of initial domain positions
  356. // F #F by 3 list of triangle indices into V
  357. // energy ARAPEnergyType enum value defining which energy is being used.
  358. // See ARAPEnergyType.h for valid options and explanations.
  359. // Outputs:
  360. // CSM dim*#V/#F by dim*#V sparse matrix containing special laplacians along
  361. // the diagonal so that when multiplied by V gives covariance matrix
  362. // elements, can be used to speed up covariance matrix computation)igl_Qu8mg5v7";
  363. const char *__doc_igl_cross_field_missmatch = R"igl_Qu8mg5v7(// Inputs:
  364. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  365. // F #F by 3 eigen Matrix of face (quad) indices
  366. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  367. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  368. // isCombed boolean, specifying whether the field is combed (i.e. matching has been precomputed.
  369. // If not, the field is combed first.
  370. // Output:
  371. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  372. // across all face edges
  373. //)igl_Qu8mg5v7";
  374. const char *__doc_igl_cut_mesh_from_singularities = R"igl_Qu8mg5v7(// Given a mesh (V,F) and the integer mismatch of a cross field per edge
  375. // (MMatch), finds the cut_graph connecting the singularities (seams) and the
  376. // degree of the singularities singularity_index
  377. //
  378. // Input:
  379. // V #V by 3 list of mesh vertex positions
  380. // F #F by 3 list of faces
  381. // MMatch #F by 3 list of per corner integer mismatch
  382. // Outputs:
  383. // seams #F by 3 list of per corner booleans that denotes if an edge is a
  384. // seam or not
  385. //)igl_Qu8mg5v7";
  386. const char *__doc_igl_doublearea = R"igl_Qu8mg5v7(// DOUBLEAREA computes twice the area for each input triangle[quad]
  387. //
  388. // Templates:
  389. // DerivedV derived type of eigen matrix for V (e.g. derived from
  390. // MatrixXd)
  391. // DerivedF derived type of eigen matrix for F (e.g. derived from
  392. // MatrixXi)
  393. // DeriveddblA derived type of eigen matrix for dblA (e.g. derived from
  394. // MatrixXd)
  395. // Inputs:
  396. // V #V by dim list of mesh vertex positions
  397. // F #F by simplex_size list of mesh faces (must be triangles or quads)
  398. // Outputs:
  399. // dblA #F list of triangle[quad] double areas (SIGNED only for 2D input)
  400. //
  401. // Known bug: For dim==3 complexity is O(#V + #F)!! Not just O(#F). This is a big deal
  402. // if you have 1million unreferenced vertices and 1 face)igl_Qu8mg5v7";
  403. const char *__doc_igl_doublearea_single = R"igl_Qu8mg5v7(// Single triangle in 2D!
  404. //
  405. // This should handle streams of corners not just single corners)igl_Qu8mg5v7";
  406. const char *__doc_igl_doublearea_quad = R"igl_Qu8mg5v7(// DOUBLEAREA_QUAD computes twice the area for each input quadrilateral
  407. //
  408. // Inputs:
  409. // V #V by dim list of mesh vertex positions
  410. // F #F by simplex_size list of mesh faces (must be quadrilaterals)
  411. // Outputs:
  412. // dblA #F list of quadrilateral double areas
  413. //)igl_Qu8mg5v7";
  414. const char *__doc_igl_edge_lengths = R"igl_Qu8mg5v7(// Constructs a list of lengths of edges opposite each index in a face
  415. // (triangle/tet) list
  416. //
  417. // Templates:
  418. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  419. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  420. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  421. // Inputs:
  422. // V eigen matrix #V by 3
  423. // F #F by 2 list of mesh edges
  424. // or
  425. // F #F by 3 list of mesh faces (must be triangles)
  426. // or
  427. // T #T by 4 list of mesh elements (must be tets)
  428. // Outputs:
  429. // L #F by {1|3|6} list of edge lengths
  430. // for edges, column of lengths
  431. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  432. // for tets, columns correspond to edges
  433. // [3 0],[3 1],[3 2],[1 2],[2 0],[0 1]
  434. //)igl_Qu8mg5v7";
  435. const char *__doc_igl_edge_topology = R"igl_Qu8mg5v7(// Initialize Edges and their topological relations
  436. //
  437. // Output:
  438. // EV : #Ex2, Stores the edge description as pair of indices to vertices
  439. // FE : #Fx3, Stores the Triangle-Edge relation
  440. // EF : #Ex2: Stores the Edge-Triangle relation
  441. //)igl_Qu8mg5v7";
  442. const char *__doc_igl_eigs = R"igl_Qu8mg5v7(See eigs for the documentation.)igl_Qu8mg5v7";
  443. const char *__doc_igl_embree_ambient_occlusion = R"igl_Qu8mg5v7(// Compute ambient occlusion per given point
  444. //
  445. // Inputs:
  446. // ei EmbreeIntersector containing (V,F)
  447. // P #P by 3 list of origin points
  448. // N #P by 3 list of origin normals
  449. // Outputs:
  450. // S #P list of ambient occlusion values between 1 (fully occluded) and
  451. // 0 (not occluded)
  452. //)igl_Qu8mg5v7";
  453. const char *__doc_igl_embree_reorient_facets_raycast = R"igl_Qu8mg5v7(// Orient each component (identified by C) of a mesh (V,F) using ambient
  454. // occlusion such that the front side is less occluded than back side, as
  455. // described in "A Simple Method for Correcting Facet Orientations in
  456. // Polygon Meshes Based on Ray Casting" [Takayama et al. 2014].
  457. //
  458. // Inputs:
  459. // V #V by 3 list of vertex positions
  460. // F #F by 3 list of triangle indices
  461. // rays_total Total number of rays that will be shot
  462. // rays_minimum Minimum number of rays that each patch should receive
  463. // facet_wise Decision made for each face independently, no use of patches
  464. // (i.e., each face is treated as a patch)
  465. // use_parity Use parity mode
  466. // is_verbose Verbose output to cout
  467. // Outputs:
  468. // I #F list of whether face has been flipped
  469. // C #F list of patch ID (output of bfs_orient > manifold patches))igl_Qu8mg5v7";
  470. const char *__doc_igl_embree_line_mesh_intersection = R"igl_Qu8mg5v7(// Project the point cloud V_source onto the triangle mesh
  471. // V_target,F_target.
  472. // A ray is casted for every vertex in the direction specified by
  473. // N_source and its opposite.
  474. //
  475. // Input:
  476. // V_source: #Vx3 Vertices of the source mesh
  477. // N_source: #Vx3 Normals of the point cloud
  478. // V_target: #V2x3 Vertices of the target mesh
  479. // F_target: #F2x3 Faces of the target mesh
  480. //
  481. // Output:
  482. // #Vx3 matrix of baricentric coordinate. Each row corresponds to
  483. // a vertex of the projected mesh and it has the following format:
  484. // id b1 b2. id is the id of a face of the source mesh. b1 and b2 are
  485. // the barycentric coordinates wrt the first two edges of the triangle
  486. // To convert to standard global coordinates, see barycentric_to_global.h)igl_Qu8mg5v7";
  487. const char *__doc_igl_find_cross_field_singularities = R"igl_Qu8mg5v7(// Inputs:
  488. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  489. // F #F by 3 eigen Matrix of face (quad) indices
  490. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  491. // across all face edges
  492. // Output:
  493. // isSingularity #V by 1 boolean eigen Vector indicating the presence of a singularity on a vertex
  494. // singularityIndex #V by 1 integer eigen Vector containing the singularity indices
  495. //)igl_Qu8mg5v7";
  496. const char *__doc_igl_fit_rotations = R"igl_Qu8mg5v7(// Known issues: This seems to be implemented in Eigen/Geometry:
  497. // Eigen::umeyama
  498. //
  499. // FIT_ROTATIONS Given an input mesh and new positions find rotations for
  500. // every covariance matrix in a stack of covariance matrices
  501. //
  502. // Inputs:
  503. // S nr*dim by dim stack of covariance matrices
  504. // single_precision whether to use single precision (faster)
  505. // Outputs:
  506. // R dim by dim * nr list of rotations
  507. //)igl_Qu8mg5v7";
  508. const char *__doc_igl_fit_rotations_planar = R"igl_Qu8mg5v7(// FIT_ROTATIONS Given an input mesh and new positions find 2D rotations for
  509. // every vertex that best maps its one ring to the new one ring
  510. //
  511. // Inputs:
  512. // S nr*dim by dim stack of covariance matrices, third column and every
  513. // third row will be ignored
  514. // Outputs:
  515. // R dim by dim * nr list of rotations, third row and third column of each
  516. // rotation will just be identity
  517. //)igl_Qu8mg5v7";
  518. const char *__doc_igl_fit_rotations_SSE = R"igl_Qu8mg5v7(See fit_rotations_SSE for the documentation.)igl_Qu8mg5v7";
  519. const char *__doc_igl_floor = R"igl_Qu8mg5v7(// Floor a given matrix to nearest integers
  520. //
  521. // Inputs:
  522. // X m by n matrix of scalars
  523. // Outputs:
  524. // Y m by n matrix of floored integers)igl_Qu8mg5v7";
  525. const char *__doc_igl_gaussian_curvature = R"igl_Qu8mg5v7(// Compute discrete local integral gaussian curvature (angle deficit, without
  526. // averaging by local area).
  527. //
  528. // Inputs:
  529. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  530. // F #F by 3 eigen Matrix of face (triangle) indices
  531. // Output:
  532. // K #V by 1 eigen Matrix of discrete gaussian curvature values
  533. //)igl_Qu8mg5v7";
  534. const char *__doc_igl_get_seconds = R"igl_Qu8mg5v7(// Return the current time in seconds since program start
  535. //
  536. // Example:
  537. // const auto & tictoc = []()
  538. // {
  539. // static double t_start = igl::get_seconds();
  540. // double diff = igl::get_seconds()-t_start;
  541. // t_start += diff;
  542. // return diff;
  543. // };
  544. // tictoc();
  545. // ... // part 1
  546. // cout<<"part 1: "<<tictoc()<<endl;
  547. // ... // part 2
  548. // cout<<"part 2: "<<tictoc()<<endl;
  549. // ... // etc)igl_Qu8mg5v7";
  550. const char *__doc_igl_grad = R"igl_Qu8mg5v7(// Gradient of a scalar function defined on piecewise linear elements (mesh)
  551. // is constant on each triangle i,j,k:
  552. // grad(Xijk) = (Xj-Xi) * (Vi - Vk)^R90 / 2A + (Xk-Xi) * (Vj - Vi)^R90 / 2A
  553. // where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
  554. // i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
  555. // 90 degrees
  556. //)igl_Qu8mg5v7";
  557. const char *__doc_igl_harmonic = R"igl_Qu8mg5v7(// Compute k-harmonic weight functions "coordinates".
  558. //
  559. //
  560. // Inputs:
  561. // V #V by dim vertex positions
  562. // F #F by simplex-size list of element indices
  563. // b #b boundary indices into V
  564. // bc #b by #W list of boundary values
  565. // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
  566. // Outputs:
  567. // W #V by #W list of weights
  568. //)igl_Qu8mg5v7";
  569. const char *__doc_igl_hsv_to_rgb = R"igl_Qu8mg5v7(// Convert RGB to HSV
  570. //
  571. // Inputs:
  572. // h hue value (degrees: [0,360])
  573. // s saturation value ([0,1])
  574. // v value value ([0,1])
  575. // Outputs:
  576. // r red value ([0,1])
  577. // g green value ([0,1])
  578. // b blue value ([0,1]))igl_Qu8mg5v7";
  579. const char *__doc_igl_internal_angles = R"igl_Qu8mg5v7(// Compute internal angles for a triangle mesh
  580. //
  581. // Inputs:
  582. // V #V by dim eigen Matrix of mesh vertex nD positions
  583. // F #F by poly-size eigen Matrix of face (triangle) indices
  584. // Output:
  585. // K #F by poly-size eigen Matrix of internal angles
  586. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  587. //
  588. // Known Issues:
  589. // if poly-size ≠ 3 then dim must equal 3.)igl_Qu8mg5v7";
  590. const char *__doc_igl_invert_diag = R"igl_Qu8mg5v7(// Templates:
  591. // T should be a eigen sparse matrix primitive type like int or double
  592. // Inputs:
  593. // X an m by n sparse matrix
  594. // Outputs:
  595. // Y an m by n sparse matrix)igl_Qu8mg5v7";
  596. const char *__doc_igl_is_irregular_vertex = R"igl_Qu8mg5v7(// Determine if a vertex is irregular, i.e. it has more than 6 (triangles)
  597. // or 4 (quads) incident edges. Vertices on the boundary are ignored.
  598. //
  599. // Inputs:
  600. // V #V by dim list of vertex positions
  601. // F #F by 3[4] list of triangle[quads] indices
  602. // Returns #V vector of bools revealing whether vertices are singular
  603. //)igl_Qu8mg5v7";
  604. const char *__doc_igl_jet = R"igl_Qu8mg5v7(// JET like MATLAB's jet
  605. //
  606. // Inputs:
  607. // m number of colors
  608. // Outputs:
  609. // J m by list of RGB colors between 0 and 1
  610. //
  611. //#ifndef IGL_NO_EIGEN
  612. // void jet(const int m, Eigen::MatrixXd & J);
  613. //#endif
  614. // Wrapper for directly computing [r,g,b] values for a given factor f between
  615. // 0 and 1
  616. //
  617. // Inputs:
  618. // f factor determining color value as if 0 was min and 1 was max
  619. // Outputs:
  620. // r red value
  621. // g green value
  622. // b blue value)igl_Qu8mg5v7";
  623. const char *__doc_igl_local_basis = R"igl_Qu8mg5v7(// Compute a local orthogonal reference system for each triangle in the given mesh
  624. // Templates:
  625. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  626. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  627. // Inputs:
  628. // V eigen matrix #V by 3
  629. // F #F by 3 list of mesh faces (must be triangles)
  630. // Outputs:
  631. // B1 eigen matrix #F by 3, each vector is tangent to the triangle
  632. // B2 eigen matrix #F by 3, each vector is tangent to the triangle and perpendicular to B1
  633. // B3 eigen matrix #F by 3, normal of the triangle
  634. //
  635. // See also: adjacency_matrix)igl_Qu8mg5v7";
  636. const char *__doc_igl_lscm = R"igl_Qu8mg5v7(// Compute a Least-squares conformal map parametrization (equivalently
  637. // derived in "Intrinsic Parameterizations of Surface Meshes" [Desbrun et al.
  638. // 2002] and "Least Squares Conformal Maps for Automatic Texture Atlas
  639. // Generation" [Lévy et al. 2002]), though this implementation follows the
  640. // derivation in: "Spectral Conformal Parameterization" [Mullen et al. 2008]
  641. // (note, this does **not** implement the Eigen-decomposition based method in
  642. // [Mullen et al. 2008], which is not equivalent). Input should be a manifold
  643. // mesh (also no unreferenced vertices) and "boundary" (fixed vertices) `b`
  644. // should contain at least two vertices per connected component.
  645. //
  646. // Inputs:
  647. // V #V by 3 list of mesh vertex positions
  648. // F #F by 3 list of mesh faces (must be triangles)
  649. // b #b boundary indices into V
  650. // bc #b by 3 list of boundary values
  651. // Outputs:
  652. // UV #V by 2 list of 2D mesh vertex positions in UV space
  653. // Returns true only on solver success.
  654. //)igl_Qu8mg5v7";
  655. const char *__doc_igl_map_vertices_to_circle = R"igl_Qu8mg5v7(// Map the vertices whose indices are in a given boundary loop (bnd) on the
  656. // unit circle with spacing proportional to the original boundary edge
  657. // lengths.
  658. //
  659. // Inputs:
  660. // V #V by dim list of mesh vertex positions
  661. // b #W list of vertex ids
  662. // Outputs:
  663. // UV #W by 2 list of 2D position on the unit circle for the vertices in b)igl_Qu8mg5v7";
  664. const char *__doc_igl_massmatrix = R"igl_Qu8mg5v7(// Constructs the mass (area) matrix for a given mesh (V,F).
  665. //
  666. // Templates:
  667. // DerivedV derived type of eigen matrix for V (e.g. derived from
  668. // MatrixXd)
  669. // DerivedF derived type of eigen matrix for F (e.g. derived from
  670. // MatrixXi)
  671. // Scalar scalar type for eigen sparse matrix (e.g. double)
  672. // Inputs:
  673. // V #V by dim list of mesh vertex positions
  674. // F #F by simplex_size list of mesh faces (must be triangles)
  675. // type one of the following ints:
  676. // MASSMATRIX_TYPE_BARYCENTRIC barycentric
  677. // MASSMATRIX_TYPE_VORONOI voronoi-hybrid {default}
  678. // MASSMATRIX_TYPE_FULL full {not implemented}
  679. // Outputs:
  680. // M #V by #V mass matrix
  681. //
  682. // See also: adjacency_matrix
  683. //)igl_Qu8mg5v7";
  684. const char *__doc_igl_min_quad_with_fixed_precompute = R"igl_Qu8mg5v7(// Known Bugs: rows of Aeq **should probably** be linearly independent.
  685. // During precomputation, the rows of a Aeq are checked via QR. But in case
  686. // they're not then resulting probably will no longer be sparse: it will be
  687. // slow.
  688. //
  689. // MIN_QUAD_WITH_FIXED Minimize quadratic energy
  690. //
  691. // 0.5*Z'*A*Z + Z'*B + C with
  692. //
  693. // constraints that Z(known) = Y, optionally also subject to the constraints
  694. // Aeq*Z = Beq
  695. //
  696. // Templates:
  697. // T should be a eigen matrix primitive type like int or double
  698. // Inputs:
  699. // A n by n matrix of quadratic coefficients
  700. // known list of indices to known rows in Z
  701. // Y list of fixed values corresponding to known rows in Z
  702. // Aeq m by n list of linear equality constraint coefficients
  703. // pd flag specifying whether A(unknown,unknown) is positive definite
  704. // Outputs:
  705. // data factorization struct with all necessary information to solve
  706. // using min_quad_with_fixed_solve
  707. // Returns true on success, false on error
  708. //
  709. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  710. // secs, igl/min_quad_with_fixed.h 7.1 secs
  711. //)igl_Qu8mg5v7";
  712. const char *__doc_igl_min_quad_with_fixed_solve = R"igl_Qu8mg5v7(// Solves a system previously factored using min_quad_with_fixed_precompute
  713. //
  714. // Template:
  715. // T type of sparse matrix (e.g. double)
  716. // DerivedY type of Y (e.g. derived from VectorXd or MatrixXd)
  717. // DerivedZ type of Z (e.g. derived from VectorXd or MatrixXd)
  718. // Inputs:
  719. // data factorization struct with all necessary precomputation to solve
  720. // B n by 1 column of linear coefficients
  721. // Y b by 1 list of constant fixed values
  722. // Beq m by 1 list of linear equality constraint constant values
  723. // Outputs:
  724. // Z n by cols solution
  725. // sol #unknowns+#lagrange by cols solution to linear system
  726. // Returns true on success, false on error)igl_Qu8mg5v7";
  727. const char *__doc_igl_min_quad_with_fixed = R"igl_Qu8mg5v7(See min_quad_with_fixed for the documentation.)igl_Qu8mg5v7";
  728. const char *__doc_igl_n_polyvector = R"igl_Qu8mg5v7(// Inputs:
  729. // v0, v1 the two #3 by 1 vectors
  730. // normalized boolean, if false, then the vectors are normalized prior to the calculation
  731. // Output:
  732. // 3 by 3 rotation matrix that takes v0 to v1
  733. //)igl_Qu8mg5v7";
  734. const char *__doc_igl_parula = R"igl_Qu8mg5v7(// PARULA like MATLAB's parula
  735. //
  736. // Inputs:
  737. // m number of colors
  738. // Outputs:
  739. // J m by list of RGB colors between 0 and 1
  740. //
  741. // Wrapper for directly computing [r,g,b] values for a given factor f between
  742. // 0 and 1
  743. //
  744. // Inputs:
  745. // f factor determining color value as if 0 was min and 1 was max
  746. // Outputs:
  747. // r red value
  748. // g green value
  749. // b blue value)igl_Qu8mg5v7";
  750. const char *__doc_igl_per_corner_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  751. // Inputs:
  752. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  753. // F #F by 3 eigne Matrix of face (triangle) indices
  754. // corner_threshold threshold in degrees on sharp angles
  755. // Output:
  756. // CN #F*3 by 3 eigen Matrix of mesh vertex 3D normals, where the normal
  757. // for corner F(i,j) is at CN(i*3+j,:) )igl_Qu8mg5v7";
  758. const char *__doc_igl_per_edge_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  759. // Inputs:
  760. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  761. // F #F by 3 eigen Matrix of face (triangle) indices
  762. // weight weighting type
  763. // FN #F by 3 matrix of 3D face normals per face
  764. // Output:
  765. // N #2 by 3 matrix of mesh edge 3D normals per row
  766. // E #E by 2 matrix of edge indices per row
  767. // EMAP #E by 1 matrix of indices from all edges to E
  768. //)igl_Qu8mg5v7";
  769. const char *__doc_igl_per_face_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  770. // Inputs:
  771. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  772. // F #F by 3 eigen Matrix of face (triangle) indices
  773. // Z 3 vector normal given to faces with degenerate normal.
  774. // Output:
  775. // N #F by 3 eigen Matrix of mesh face (triangle) 3D normals
  776. //
  777. // Example:
  778. // // Give degenerate faces (1/3,1/3,1/3)^0.5
  779. // per_face_normals(V,F,Vector3d(1,1,1).normalized(),N);)igl_Qu8mg5v7";
  780. const char *__doc_igl_per_face_normals_stable = R"igl_Qu8mg5v7(// Special version where order of face indices is guaranteed not to effect
  781. // output.)igl_Qu8mg5v7";
  782. const char *__doc_igl_per_vertex_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  783. // Inputs:
  784. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  785. // F #F by 3 eigne Matrix of face (triangle) indices
  786. // weighting Weighting type
  787. // Output:
  788. // N #V by 3 eigen Matrix of mesh vertex 3D normals)igl_Qu8mg5v7";
  789. const char *__doc_igl_planarize_quad_mesh = R"igl_Qu8mg5v7(// Inputs:
  790. // Vin #V by 3 eigen Matrix of mesh vertex 3D positions
  791. // F #F by 4 eigen Matrix of face (quad) indices
  792. // maxIter maximum numbers of iterations
  793. // threshold minimum allowed threshold for non-planarity
  794. // Output:
  795. // Vout #V by 3 eigen Matrix of planar mesh vertex 3D positions
  796. //)igl_Qu8mg5v7";
  797. const char *__doc_igl_png_readPNG = R"igl_Qu8mg5v7(// Read an image from a .png file into 4 memory buffers
  798. //
  799. // Input:
  800. // png_file path to .png file
  801. // Output:
  802. // R,G,B,A texture channels
  803. // Returns true on success, false on failure
  804. //)igl_Qu8mg5v7";
  805. const char *__doc_igl_png_writePNG = R"igl_Qu8mg5v7(// Writes an image to a png file
  806. //
  807. // Input:
  808. // R,G,B,A texture channels
  809. // Output:
  810. // png_file path to .png file
  811. // Returns true on success, false on failure
  812. //)igl_Qu8mg5v7";
  813. const char *__doc_igl_point_mesh_squared_distance = R"igl_Qu8mg5v7(// Compute distances from a set of points P to a triangle mesh (V,F)
  814. //
  815. // Inputs:
  816. // P #P by 3 list of query point positions
  817. // V #V by 3 list of vertex positions
  818. // Ele #Ele by (3|2|1) list of (triangle|edge|point) indices
  819. // Outputs:
  820. // sqrD #P list of smallest squared distances
  821. // I #P list of primitive indices corresponding to smallest distances
  822. // C #P by 3 list of closest points
  823. //
  824. // Known bugs: This only computes distances to given primitivess. So
  825. // unreferenced vertices are ignored. However, degenerate primitives are
  826. // handled correctly: triangle [1 2 2] is treated as a segment [1 2], and
  827. // triangle [1 1 1] is treated as a point. So one _could_ add extra
  828. // combinatorially degenerate rows to Ele for all unreferenced vertices to
  829. // also get distances to points.)igl_Qu8mg5v7";
  830. const char *__doc_igl_polar_svd = R"igl_Qu8mg5v7(// Computes the polar decomposition (R,T) of a matrix A using SVD singular
  831. // value decomposition
  832. //
  833. // Inputs:
  834. // A 3 by 3 matrix to be decomposed
  835. // Outputs:
  836. // R 3 by 3 rotation matrix part of decomposition (**always rotataion**)
  837. // T 3 by 3 stretch matrix part of decomposition
  838. // U 3 by 3 left-singular vectors
  839. // S 3 by 1 singular values
  840. // V 3 by 3 right-singular vectors
  841. //
  842. //)igl_Qu8mg5v7";
  843. const char *__doc_igl_principal_curvature = R"igl_Qu8mg5v7(// Compute the principal curvature directions and magnitude of the given triangle mesh
  844. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  845. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  846. // Inputs:
  847. // V eigen matrix #V by 3
  848. // F #F by 3 list of mesh faces (must be triangles)
  849. // radius controls the size of the neighbourhood used, 1 = average edge lenght
  850. //
  851. // Outputs:
  852. // PD1 #V by 3 maximal curvature direction for each vertex.
  853. // PD2 #V by 3 minimal curvature direction for each vertex.
  854. // PV1 #V by 1 maximal curvature value for each vertex.
  855. // PV2 #V by 1 minimal curvature value for each vertex.
  856. //
  857. // See also: average_onto_faces, average_onto_vertices
  858. //
  859. // This function has been developed by: Nikolas De Giorgis, Luigi Rocca and Enrico Puppo.
  860. // The algorithm is based on:
  861. // Efficient Multi-scale Curvature and Crease Estimation
  862. // Daniele Panozzo, Enrico Puppo, Luigi Rocca
  863. // GraVisMa, 2010)igl_Qu8mg5v7";
  864. const char *__doc_igl_quad_planarity = R"igl_Qu8mg5v7(// Compute planarity of the faces of a quad mesh
  865. // Inputs:
  866. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  867. // F #F by 4 eigen Matrix of face (quad) indices
  868. // Output:
  869. // P #F by 1 eigen Matrix of mesh face (quad) planarities
  870. //)igl_Qu8mg5v7";
  871. const char *__doc_igl_randperm = R"igl_Qu8mg5v7(// Like matlab's randperm(n) but minus 1
  872. //
  873. // Inputs:
  874. // n number of elements
  875. // Outputs:
  876. // I n list of rand permutation of 0:n-1)igl_Qu8mg5v7";
  877. const char *__doc_igl_readDMAT = R"igl_Qu8mg5v7(See readDMAT for the documentation.)igl_Qu8mg5v7";
  878. const char *__doc_igl_readMESH = R"igl_Qu8mg5v7(// load a tetrahedral volume mesh from a .mesh file
  879. //
  880. // Templates:
  881. // Scalar type for positions and vectors (will be read as double and cast
  882. // to Scalar)
  883. // Index type for indices (will be read as int and cast to Index)
  884. // Input:
  885. // mesh_file_name path of .mesh file
  886. // Outputs:
  887. // V double matrix of vertex positions #V by 3
  888. // T #T list of tet indices into vertex positions
  889. // F #F list of face indices into vertex positions
  890. //
  891. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  892. const char *__doc_igl_readOBJ = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  893. // and texture coordinates. Mesh may have faces of any number of degree
  894. //
  895. // Templates:
  896. // Scalar type for positions and vectors (will be read as double and cast
  897. // to Scalar)
  898. // Index type for indices (will be read as int and cast to Index)
  899. // Inputs:
  900. // str path to .obj file
  901. // Outputs:
  902. // V double matrix of vertex positions #V by 3
  903. // TC double matrix of texture coordinats #TC by 2
  904. // N double matrix of corner normals #N by 3
  905. // F #F list of face indices into vertex positions
  906. // FTC #F list of face indices into vertex texture coordinates
  907. // FN #F list of face indices into vertex normals
  908. // Returns true on success, false on errors)igl_Qu8mg5v7";
  909. const char *__doc_igl_readOFF = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  910. // and texture coordinates. Mesh may have faces of any number of degree
  911. //
  912. // Templates:
  913. // Scalar type for positions and vectors (will be read as double and cast
  914. // to Scalar)
  915. // Index type for indices (will be read as int and cast to Index)
  916. // Inputs:
  917. // str path to .obj file
  918. // Outputs:
  919. // V double matrix of vertex positions #V by 3
  920. // F #F list of face indices into vertex positions
  921. // TC double matrix of texture coordinats #TC by 2
  922. // FTC #F list of face indices into vertex texture coordinates
  923. // N double matrix of corner normals #N by 3
  924. // FN #F list of face indices into vertex normals
  925. // Returns true on success, false on errors)igl_Qu8mg5v7";
  926. const char *__doc_igl_read_triangle_mesh = R"igl_Qu8mg5v7(// read mesh from an ascii file with automatic detection of file format.
  927. // supported: obj, off, stl, wrl, ply, mesh)
  928. //
  929. // Templates:
  930. // Scalar type for positions and vectors (will be read as double and cast
  931. // to Scalar)
  932. // Index type for indices (will be read as int and cast to Index)
  933. // Inputs:
  934. // str path to file
  935. // Outputs:
  936. // V eigen double matrix #V by 3
  937. // F eigen int matrix #F by 3
  938. // Returns true iff success)igl_Qu8mg5v7";
  939. const char *__doc_igl_remove_duplicate_vertices = R"igl_Qu8mg5v7( // REMOVE_DUPLICATE_VERTICES Remove duplicate vertices upto a uniqueness
  940. // tolerance (epsilon)
  941. //
  942. // Inputs:
  943. // V #V by dim list of vertex positions
  944. // epsilon uniqueness tolerance (significant digit), can probably think of
  945. // this as a tolerance on L1 distance
  946. // Outputs:
  947. // SV #SV by dim new list of vertex positions
  948. // SVI #V by 1 list of indices so SV = V(SVI,:)
  949. // SVJ #SV by 1 list of indices so V = SV(SVJ,:)
  950. //
  951. // Example:
  952. // % Mesh in (V,F)
  953. // [SV,SVI,SVJ] = remove_duplicate_vertices(V,1e-7);
  954. // % remap faces
  955. // SF = SVJ(F);
  956. //
  957. //)igl_Qu8mg5v7";
  958. const char *__doc_igl_rotate_vectors = R"igl_Qu8mg5v7(// Rotate the vectors V by A radiants on the tangent plane spanned by B1 and
  959. // B2
  960. //
  961. // Inputs:
  962. // V #V by 3 eigen Matrix of vectors
  963. // A #V eigen vector of rotation angles or a single angle to be applied
  964. // to all vectors
  965. // B1 #V by 3 eigen Matrix of base vector 1
  966. // B2 #V by 3 eigen Matrix of base vector 2
  967. //
  968. // Output:
  969. // Returns the rotated vectors
  970. //)igl_Qu8mg5v7";
  971. const char *__doc_igl_setdiff = R"igl_Qu8mg5v7(// Set difference of elements of matrices
  972. //
  973. // Inputs:
  974. // A m-long vector of indices
  975. // B n-long vector of indices
  976. // Outputs:
  977. // C (k<=m)-long vector of unique elements appearing in A but not in B
  978. // IA (k<=m)-long list of indices into A so that C = A(IA)
  979. //)igl_Qu8mg5v7";
  980. const char *__doc_igl_signed_distance = R"igl_Qu8mg5v7(// Computes signed distance to a mesh
  981. //
  982. // Inputs:
  983. // P #P by 3 list of query point positions
  984. // V #V by 3 list of vertex positions
  985. // F #F by ss list of triangle indices, ss should be 3 unless sign_type ==
  986. // SIGNED_DISTANCE_TYPE_UNSIGNED
  987. // sign_type method for computing distance _sign_ S
  988. // Outputs:
  989. // S #P list of smallest signed distances
  990. // I #P list of facet indices corresponding to smallest distances
  991. // C #P by 3 list of closest points
  992. // N #P by 3 list of closest normals (only set if
  993. // sign_type=SIGNED_DISTANCE_TYPE_PSEUDONORMAL)
  994. //
  995. // Known bugs: This only computes distances to triangles. So unreferenced
  996. // vertices and degenerate triangles are ignored.)igl_Qu8mg5v7";
  997. const char *__doc_igl_signed_distance_pseudonormal = R"igl_Qu8mg5v7(// Computes signed distance to mesh
  998. //
  999. // Inputs:
  1000. // tree AABB acceleration tree (see AABB.h)
  1001. // F #F by 3 list of triangle indices
  1002. // FN #F by 3 list of triangle normals
  1003. // VN #V by 3 list of vertex normals (ANGLE WEIGHTING)
  1004. // EN #E by 3 list of edge normals (UNIFORM WEIGHTING)
  1005. // EMAP #F*3 mapping edges in F to E
  1006. // q Query point
  1007. // Returns signed distance to mesh
  1008. //)igl_Qu8mg5v7";
  1009. const char *__doc_igl_signed_distance_winding_number = R"igl_Qu8mg5v7(// Inputs:
  1010. // tree AABB acceleration tree (see cgal/point_mesh_squared_distance.h)
  1011. // hier Winding number evaluation hierarchy
  1012. // q Query point
  1013. // Returns signed distance to mesh)igl_Qu8mg5v7";
  1014. const char *__doc_igl_slice = R"igl_Qu8mg5v7(// Act like the matlab X(row_indices,col_indices) operator, where
  1015. // row_indices, col_indices are non-negative integer indices.
  1016. //
  1017. // Inputs:
  1018. // X m by n matrix
  1019. // R list of row indices
  1020. // C list of column indices
  1021. // Output:
  1022. // Y #R by #C matrix
  1023. //
  1024. // See also: slice_mask)igl_Qu8mg5v7";
  1025. const char *__doc_igl_slice_into = R"igl_Qu8mg5v7(// Act like the matlab Y(row_indices,col_indices) = X
  1026. //
  1027. // Inputs:
  1028. // X xm by xn rhs matrix
  1029. // R list of row indices
  1030. // C list of column indices
  1031. // Y ym by yn lhs matrix
  1032. // Output:
  1033. // Y ym by yn lhs matrix, same as input but Y(R,C) = X)igl_Qu8mg5v7";
  1034. const char *__doc_igl_slice_mask = R"igl_Qu8mg5v7(// Act like the matlab X(row_mask,col_mask) operator, where
  1035. // row_mask, col_mask are non-negative integer indices.
  1036. //
  1037. // Inputs:
  1038. // X m by n matrix
  1039. // R m list of row bools
  1040. // C n list of column bools
  1041. // Output:
  1042. // Y #trues-in-R by #trues-in-C matrix
  1043. //
  1044. // See also: slice_mask)igl_Qu8mg5v7";
  1045. const char *__doc_igl_slice_tets = R"igl_Qu8mg5v7(// SLICE_TETS Slice through a tet mesh (V,T) along a given plane (via its
  1046. // implicit equation).
  1047. //
  1048. // Inputs:
  1049. // V #V by 3 list of tet mesh vertices
  1050. // T #T by 4 list of tet indices into V
  1051. // plane list of 4 coefficients in the plane equation: [x y z 1]'*plane = 0
  1052. // Optional:
  1053. // 'Manifold' followed by whether to stitch together triangles into a
  1054. // manifold mesh {true}: results in more compact U but slightly slower.
  1055. // Outputs:
  1056. // U #U by 3 list of triangle mesh vertices along slice
  1057. // G #G by 3 list of triangles indices into U
  1058. // J #G list of indices into T revealing from which tet each faces comes
  1059. // BC #U by #V list of barycentric coordinates (or more generally: linear
  1060. // interpolation coordinates) so that U = BC*V
  1061. // )igl_Qu8mg5v7";
  1062. const char *__doc_igl_sortrows = R"igl_Qu8mg5v7(// Act like matlab's [Y,I] = sortrows(X)
  1063. //
  1064. // Templates:
  1065. // DerivedX derived scalar type, e.g. MatrixXi or MatrixXd
  1066. // DerivedI derived integer type, e.g. MatrixXi
  1067. // Inputs:
  1068. // X m by n matrix whose entries are to be sorted
  1069. // ascending sort ascending (true, matlab default) or descending (false)
  1070. // Outputs:
  1071. // Y m by n matrix whose entries are sorted (**should not** be same
  1072. // reference as X)
  1073. // I m list of indices so that
  1074. // Y = X(I,:);)igl_Qu8mg5v7";
  1075. const char *__doc_igl_streamlines_init = R"igl_Qu8mg5v7( // Given a mesh and a field the function computes the /data/ necessary for tracing the field'
  1076. // streamlines, and creates the initial /state/ for the tracing.
  1077. // Inputs:
  1078. // V #V by 3 list of mesh vertex coordinates
  1079. // F #F by 3 list of mesh faces
  1080. // temp_field #F by 3n list of the 3D coordinates of the per-face vectors
  1081. // (n-degrees stacked horizontally for each triangle)
  1082. // treat_as_symmetric
  1083. // if true, adds n symmetry directions to the field (N = 2n). Else N = n
  1084. // percentage [0-1] percentage of faces sampled
  1085. // Outputs:
  1086. // data struct containing topology information of the mesh and field
  1087. // state struct containing the state of the tracing )igl_Qu8mg5v7";
  1088. const char *__doc_igl_streamlines_next = R"igl_Qu8mg5v7( // The function computes the next state for each point in the sample
  1089. // V #V by 3 list of mesh vertex coordinates
  1090. // F #F by 3 list of mesh faces
  1091. // data struct containing topology information
  1092. // state struct containing the state of the tracing )igl_Qu8mg5v7";
  1093. const char *__doc_igl_triangle_triangle_adjacency = R"igl_Qu8mg5v7(// Constructs the triangle-triangle adjacency matrix for a given
  1094. // mesh (V,F).
  1095. //
  1096. // Templates:
  1097. // Scalar derived type of eigen matrix for V (e.g. derived from
  1098. // MatrixXd)
  1099. // Index derived type of eigen matrix for F (e.g. derived from
  1100. // MatrixXi)
  1101. // Inputs:
  1102. // F #F by simplex_size list of mesh faces (must be triangles)
  1103. // Outputs:
  1104. // TT #F by #3 adjacent matrix, the element i,j is the id of the triangle adjacent to the j edge of triangle i
  1105. // TTi #F by #3 adjacent matrix, the element i,j is the id of edge of the triangle TT(i,j) that is adjacent with triangle i
  1106. // NOTE: the first edge of a triangle is [0,1] the second [1,2] and the third [2,3].
  1107. // this convention is DIFFERENT from cotmatrix_entries.h
  1108. // Known bug: this should not need to take V as input.)igl_Qu8mg5v7";
  1109. const char *__doc_igl_triangle_triangulate = R"igl_Qu8mg5v7(// Triangulate the interior of a polygon using the triangle library.
  1110. //
  1111. // Inputs:
  1112. // V #V by 2 list of 2D vertex positions
  1113. // E #E by 2 list of vertex ids forming unoriented edges of the boundary of the polygon
  1114. // H #H by 2 coordinates of points contained inside holes of the polygon
  1115. // flags string of options pass to triangle (see triangle documentation)
  1116. // Outputs:
  1117. // V2 #V2 by 2 coordinates of the vertives of the generated triangulation
  1118. // F2 #F2 by 3 list of indices forming the faces of the generated triangulation
  1119. //
  1120. // TODO: expose the option to prevent Steiner points on the boundary
  1121. //)igl_Qu8mg5v7";
  1122. const char *__doc_igl_unique = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X)
  1123. //
  1124. // Templates:
  1125. // T comparable type T
  1126. // Inputs:
  1127. // A #A vector of type T
  1128. // Outputs:
  1129. // C #C vector of unique entries in A
  1130. // IA #C index vector so that C = A(IA);
  1131. // IC #A index vector so that A = C(IC);)igl_Qu8mg5v7";
  1132. const char *__doc_igl_unique_rows = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X,'rows')
  1133. //
  1134. // Templates:
  1135. // DerivedA derived scalar type, e.g. MatrixXi or MatrixXd
  1136. // DerivedIA derived integer type, e.g. MatrixXi
  1137. // DerivedIC derived integer type, e.g. MatrixXi
  1138. // Inputs:
  1139. // A m by n matrix whose entries are to unique'd according to rows
  1140. // Outputs:
  1141. // C #C vector of unique rows in A
  1142. // IA #C index vector so that C = A(IA,:);
  1143. // IC #A index vector so that A = C(IC,:);)igl_Qu8mg5v7";
  1144. const char *__doc_igl_unproject_onto_mesh = R"igl_Qu8mg5v7(// Unproject a screen location (using current opengl viewport, projection, and
  1145. // model view) to a 3D position _onto_ a given mesh, if the ray through the
  1146. // given screen location (x,y) _hits_ the mesh.
  1147. //
  1148. // Inputs:
  1149. // pos screen space coordinates
  1150. // model model matrix
  1151. // proj projection matrix
  1152. // viewport vieweport vector
  1153. // V #V by 3 list of mesh vertex positions
  1154. // F #F by 3 list of mesh triangle indices into V
  1155. // Outputs:
  1156. // fid id of the first face hit
  1157. // bc barycentric coordinates of hit
  1158. // Returns true if there's a hit)igl_Qu8mg5v7";
  1159. const char *__doc_igl_upsample = R"igl_Qu8mg5v7(// Subdivide a mesh without moving vertices: loop subdivision but odd
  1160. // vertices stay put and even vertices are just edge midpoints
  1161. //
  1162. // Templates:
  1163. // MatV matrix for vertex positions, e.g. MatrixXd
  1164. // MatF matrix for vertex positions, e.g. MatrixXi
  1165. // Inputs:
  1166. // V #V by dim mesh vertices
  1167. // F #F by 3 mesh triangles
  1168. // Outputs:
  1169. // NV new vertex positions, V is guaranteed to be at top
  1170. // NF new list of face indices
  1171. //
  1172. // NOTE: V should not be the same as NV,
  1173. // NOTE: F should not be the same as NF, use other proto
  1174. //
  1175. // Known issues:
  1176. // - assumes (V,F) is edge-manifold.)igl_Qu8mg5v7";
  1177. const char *__doc_igl_winding_number = R"igl_Qu8mg5v7(// WINDING_NUMBER Compute the sum of solid angles of a triangle/tetrahedron
  1178. // described by points (vectors) V
  1179. //
  1180. // Templates:
  1181. // dim dimension of input
  1182. // Inputs:
  1183. // V n by 3 list of vertex positions
  1184. // F #F by 3 list of triangle indices, minimum index is 0
  1185. // O no by 3 list of origin positions
  1186. // Outputs:
  1187. // S no by 1 list of winding numbers
  1188. //
  1189. // 3d)igl_Qu8mg5v7";
  1190. const char *__doc_igl_winding_number_3 = R"igl_Qu8mg5v7(// Inputs:
  1191. // V pointer to array containing #V by 3 vertex positions along rows,
  1192. // given in column major order
  1193. // n number of mesh vertices
  1194. // F pointer to array containing #F by 3 face indices along rows,
  1195. // given in column major order
  1196. // m number of faces
  1197. // O pointer to array containing #O by 3 query positions along rows,
  1198. // given in column major order
  1199. // no number of origins
  1200. // Outputs:
  1201. // S no by 1 list of winding numbers)igl_Qu8mg5v7";
  1202. const char *__doc_igl_winding_number_2 = R"igl_Qu8mg5v7(//// Only one evaluation origin
  1203. //template <typename DerivedF>
  1204. //IGL_INLINE void winding_number_3(
  1205. // const double * V,
  1206. // const int n,
  1207. // const DerivedF * F,
  1208. // const int m,
  1209. // const double * O,
  1210. // double * S);
  1211. // 2d)igl_Qu8mg5v7";
  1212. const char *__doc_igl_writeMESH = R"igl_Qu8mg5v7(// save a tetrahedral volume mesh to a .mesh file
  1213. //
  1214. // Templates:
  1215. // Scalar type for positions and vectors (will be cast as double)
  1216. // Index type for indices (will be cast to int)
  1217. // Input:
  1218. // mesh_file_name path of .mesh file
  1219. // V double matrix of vertex positions #V by 3
  1220. // T #T list of tet indices into vertex positions
  1221. // F #F list of face indices into vertex positions
  1222. //
  1223. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  1224. const char *__doc_igl_writeOBJ = R"igl_Qu8mg5v7(// Write a mesh in an ascii obj file
  1225. // Inputs:
  1226. // str path to outputfile
  1227. // V #V by 3 mesh vertex positions
  1228. // F #F by 3|4 mesh indices into V
  1229. // CN #CN by 3 normal vectors
  1230. // FN #F by 3|4 corner normal indices into CN
  1231. // TC #TC by 2|3 texture coordinates
  1232. // FTC #F by 3|4 corner texture coord indices into TC
  1233. // Returns true on success, false on error)igl_Qu8mg5v7";