min_quad_with_fixed.h 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. #ifndef IGL_MIN_QUAD_WITH_FIXED_H
  2. #define IGL_MIN_QUAD_WITH_FIXED_H
  3. #define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET
  4. #include <Eigen/Core>
  5. #include <Eigen/Dense>
  6. #include <Eigen/Sparse>
  7. #include <Eigen/SparseExtra>
  8. namespace igl
  9. {
  10. template <typename T>
  11. struct min_quad_with_fixed_data;
  12. // MIN_QUAD_WITH_FIXED Minimize quadratic energy Z'*A*Z + Z'*B + C with
  13. // constraints that Z(known) = Y, optionally also subject to the constraints
  14. // Aeq*Z = Beq
  15. //
  16. // Templates:
  17. // T should be a eigen matrix primitive type like int or double
  18. // Inputs:
  19. // A n by n matrix of quadratic coefficients
  20. // B n by 1 column of linear coefficients
  21. // known list of indices to known rows in Z
  22. // Y list of fixed values corresponding to known rows in Z
  23. // Optional:
  24. // Aeq m by n list of linear equality constraint coefficients
  25. // Beq m by 1 list of linear equality constraint constant values
  26. // pd flag specifying whether A(unknown,unknown) is positive definite
  27. // Outputs:
  28. // data factorization struct with all necessary information to solve
  29. // using min_quad_with_fixed_solve
  30. // Returns true on success, false on error
  31. template <typename T>
  32. inline bool min_quad_with_fixed_precompute(
  33. const Eigen::SparseMatrix<T>& A,
  34. const Eigen::MatrixXi & known,
  35. const Eigen::SparseMatrix<T>& Aeq,
  36. const bool pd,
  37. min_quad_with_fixed_data<T> & data
  38. );
  39. // Solves a system previously factored using min_quad_with_fixed_precompute
  40. // Inputs:
  41. // data factorization struct with all necessary precomputation to solve
  42. // Outputs:
  43. // Z n by cols solution
  44. // Returns true on success, false on error
  45. template <typename T>
  46. inline bool min_quad_with_fixed_solve(
  47. const min_quad_with_fixed_data<T> & data,
  48. const Eigen::Matrix<T,Eigen::Dynamic,1> & B,
  49. const Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> & Y,
  50. const Eigen::Matrix<T,Eigen::Dynamic,1> & Beq,
  51. Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> & Z);
  52. }
  53. // Implementation
  54. #include <Eigen/SparseExtra>
  55. #include <cassert>
  56. #include <cstdio>
  57. #include "slice.h"
  58. #include "is_symmetric.h"
  59. #include "find.h"
  60. #include "sparse.h"
  61. #include "repmat.h"
  62. #include "lu_lagrange.h"
  63. #include "full.h"
  64. template <typename T>
  65. struct igl::min_quad_with_fixed_data
  66. {
  67. // Size of original system: number of unknowns + number of knowns
  68. int n;
  69. // Whether A(unknown,unknown) is positive definite
  70. bool Auu_pd;
  71. // Whether A(unknown,unknown) is symmetric
  72. bool Auu_sym;
  73. // Indices of known variables
  74. Eigen::Matrix<int,Eigen::Dynamic,1> known;
  75. // Indices of unknown variables
  76. Eigen::Matrix<int,Eigen::Dynamic,1> unknown;
  77. // Indices of lagrange variables
  78. Eigen::Matrix<int,Eigen::Dynamic,1> lagrange;
  79. // Indices of unknown variable followed by Indices of lagrange variables
  80. Eigen::Matrix<int,Eigen::Dynamic,1> unknown_lagrange;
  81. // Matrix multiplied against Y when constructing right hand side
  82. Eigen::SparseMatrix<T> preY;
  83. // Tells whether system is sparse
  84. bool sparse;
  85. // Lower triangle of LU decomposition of final system matrix
  86. Eigen::SparseMatrix<T> L;
  87. // Upper triangle of LU decomposition of final system matrix
  88. Eigen::SparseMatrix<T> U;
  89. // Dense LU factorization
  90. Eigen::FullPivLU<Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> > lu;
  91. };
  92. template <typename T>
  93. inline bool igl::min_quad_with_fixed_precompute(
  94. const Eigen::SparseMatrix<T>& A,
  95. const Eigen::Matrix<int,Eigen::Dynamic,1> & known,
  96. const Eigen::SparseMatrix<T>& Aeq,
  97. const bool pd,
  98. igl::min_quad_with_fixed_data<T> & data
  99. )
  100. {
  101. // number of rows
  102. int n = A.rows();
  103. // cache problem size
  104. data.n = n;
  105. int neq = Aeq.rows();
  106. // default is to have 0 linear equality constraints
  107. if(Aeq.size() != 0)
  108. {
  109. assert(n == Aeq.cols());
  110. }
  111. assert(A.rows() == n);
  112. assert(A.cols() == n);
  113. // number of known rows
  114. int kr = known.size();
  115. assert(kr == 0 || known.minCoeff() >= 0);
  116. assert(kr == 0 || known.maxCoeff() < n);
  117. assert(neq <= n);
  118. // cache known
  119. data.known = known;
  120. // get list of unknown indices
  121. data.unknown.resize(n-kr);
  122. std::vector<bool> unknown_mask;
  123. unknown_mask.resize(n,true);
  124. for(int i = 0;i<kr;i++)
  125. {
  126. unknown_mask[known(i)] = false;
  127. }
  128. int u = 0;
  129. for(int i = 0;i<n;i++)
  130. {
  131. if(unknown_mask[i])
  132. {
  133. data.unknown(u) = i;
  134. u++;
  135. }
  136. }
  137. // get list of lagrange multiplier indices
  138. data.lagrange.resize(neq);
  139. for(int i = 0;i<neq;i++)
  140. {
  141. data.lagrange(i) = n + i;
  142. }
  143. // cache unknown followed by lagrange indices
  144. data.unknown_lagrange.resize(data.unknown.size()+data.lagrange.size());
  145. data.unknown_lagrange << data.unknown, data.lagrange;
  146. Eigen::SparseMatrix<T> Auu;
  147. igl::slice(A,data.unknown,data.unknown,Auu);
  148. // determine if A(unknown,unknown) is symmetric and/or positive definite
  149. data.Auu_sym = igl::is_symmetric(Auu);
  150. // Positive definiteness is *not* determined, rather it is given as a
  151. // parameter
  152. data.Auu_pd = pd;
  153. // Append lagrange multiplier quadratic terms
  154. Eigen::SparseMatrix<T> new_A;
  155. Eigen::Matrix<int,Eigen::Dynamic,1> AI;
  156. Eigen::Matrix<int,Eigen::Dynamic,1> AJ;
  157. Eigen::Matrix<T,Eigen::Dynamic,1> AV;
  158. igl::find(A,AI,AJ,AV);
  159. Eigen::Matrix<int,Eigen::Dynamic,1> AeqI(0,1);
  160. Eigen::Matrix<int,Eigen::Dynamic,1> AeqJ(0,1);
  161. Eigen::Matrix<T,Eigen::Dynamic,1> AeqV(0,1);
  162. if(neq > 0)
  163. {
  164. igl::find(Aeq,AeqI,AeqJ,AeqV);
  165. }
  166. Eigen::Matrix<int,Eigen::Dynamic,1> new_AI(AV.size()+AeqV.size()*2);
  167. Eigen::Matrix<int,Eigen::Dynamic,1> new_AJ(AV.size()+AeqV.size()*2);
  168. Eigen::Matrix<T,Eigen::Dynamic,1> new_AV(AV.size()+AeqV.size()*2);
  169. new_AI << AI, (AeqI.array()+n).matrix(), AeqJ;
  170. new_AJ << AJ, AeqJ, (AeqI.array()+n).matrix();
  171. new_AV << AV, AeqV, AeqV;
  172. igl::sparse(new_AI,new_AJ,new_AV,n+neq,n+neq,new_A);
  173. // precompute RHS builders
  174. if(kr > 0)
  175. {
  176. Eigen::SparseMatrix<T> Aulk;
  177. igl::slice(new_A,data.unknown_lagrange,data.known,Aulk);
  178. Eigen::SparseMatrix<T> Akul;
  179. igl::slice(new_A,data.known,data.unknown_lagrange,Akul);
  180. //// This doesn't work!!!
  181. //data.preY = Aulk + Akul.transpose();
  182. Eigen::SparseMatrix<T> AkulT = Akul.transpose();
  183. data.preY = Aulk + AkulT;
  184. }else
  185. {
  186. data.preY.resize(data.unknown_lagrange.size(),0);
  187. }
  188. // Create factorization
  189. if(data.Auu_sym && data.Auu_pd)
  190. {
  191. data.sparse = true;
  192. Eigen::SparseMatrix<T> Aequ(0,0);
  193. if(neq>0)
  194. {
  195. Eigen::Matrix<int,Eigen::Dynamic,1> Aeq_rows;
  196. Aeq_rows.resize(neq);
  197. for(int i = 0;i<neq;i++)
  198. {
  199. Aeq_rows(i) = i;
  200. }
  201. igl::slice(Aeq,Aeq_rows,data.unknown,Aequ);
  202. }
  203. // Get transpose of Aequ
  204. Eigen::SparseMatrix<T> AequT = Aequ.transpose();
  205. // Compute LU decomposition
  206. bool lu_success = igl::lu_lagrange(Auu,AequT,data.L,data.U);
  207. if(!lu_success)
  208. {
  209. return false;
  210. }
  211. }else
  212. {
  213. Eigen::SparseMatrix<T> NA;
  214. igl::slice(new_A,data.unknown_lagrange,data.unknown_lagrange,NA);
  215. // Build LU decomposition of NA
  216. data.sparse = false;
  217. fprintf(stderr,
  218. "Warning: min_quad_with_fixed_precompute() resorting to dense LU\n");
  219. Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> NAfull;
  220. igl::full(NA,NAfull);
  221. data.lu =
  222. Eigen::FullPivLU<Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> >(NAfull);
  223. if(!data.lu.isInvertible())
  224. {
  225. fprintf(stderr,
  226. "Error: min_quad_with_fixed_precompute() LU not invertible\n");
  227. return false;
  228. }
  229. }
  230. return true;
  231. }
  232. template <typename T>
  233. inline bool igl::min_quad_with_fixed_solve(
  234. const igl::min_quad_with_fixed_data<T> & data,
  235. const Eigen::Matrix<T,Eigen::Dynamic,1> & B,
  236. const Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> & Y,
  237. const Eigen::Matrix<T,Eigen::Dynamic,1> & Beq,
  238. Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> & Z)
  239. {
  240. // number of known rows
  241. int kr = data.known.size();
  242. if(kr!=0)
  243. {
  244. assert(kr == Y.rows());
  245. }
  246. // number of columns to solve
  247. int cols = Y.cols();
  248. // number of lagrange multipliers aka linear equality constraints
  249. int neq = data.lagrange.size();
  250. // append lagrange multiplier rhs's
  251. Eigen::Matrix<T,Eigen::Dynamic,1> BBeq(B.size() + Beq.size());
  252. BBeq << B, (Beq*-2.0);
  253. // Build right hand side
  254. Eigen::Matrix<T,Eigen::Dynamic,1> BBequl;
  255. igl::slice(BBeq,data.unknown_lagrange,BBequl);
  256. Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> BBequlcols;
  257. igl::repmat(BBequl,1,cols,BBequlcols);
  258. Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> NB;
  259. if(kr == 0)
  260. {
  261. NB = BBequlcols;
  262. }else
  263. {
  264. NB = data.preY * Y + BBequlcols;
  265. }
  266. // resize output
  267. Z.resize(data.n,cols);
  268. // Set known values
  269. for(int i = 0;i < kr;i++)
  270. {
  271. for(int j = 0;j < cols;j++)
  272. {
  273. Z(data.known(i),j) = Y(i,j);
  274. }
  275. }
  276. //std::cout<<"NB=["<<std::endl<<NB<<std::endl<<"];"<<std::endl;
  277. if(data.sparse)
  278. {
  279. //std::cout<<"data.LIJV=["<<std::endl;print_ijv(data.L,1);std::cout<<std::endl<<"];"<<
  280. // std::endl<<"data.L=sparse(data.LIJV(:,1),data.LIJV(:,2),data.LIJV(:,3),"<<
  281. // data.L.rows()<<","<<data.L.cols()<<");"<<std::endl;
  282. //std::cout<<"data.UIJV=["<<std::endl;print_ijv(data.U,1);std::cout<<std::endl<<"];"<<
  283. // std::endl<<"data.U=sparse(data.UIJV(:,1),data.UIJV(:,2),data.UIJV(:,3),"<<
  284. // data.U.rows()<<","<<data.U.cols()<<");"<<std::endl;
  285. data.L.template triangularView<Eigen::Lower>().solveInPlace(NB);
  286. data.U.template triangularView<Eigen::Upper>().solveInPlace(NB);
  287. }else
  288. {
  289. NB = data.lu.solve(NB);
  290. }
  291. // Now NB contains sol/-0.5
  292. NB *= -0.5;
  293. // Now NB contains solution
  294. // Place solution in Z
  295. for(int i = 0;i<(NB.rows()-neq);i++)
  296. {
  297. for(int j = 0;j<NB.cols();j++)
  298. {
  299. Z(data.unknown_lagrange(i),j) = NB(i,j);
  300. }
  301. }
  302. return true;
  303. }
  304. #endif