py_doc.cpp 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814
  1. const char *__doc_igl_principal_curvature = R"igl_Qu8mg5v7(// Compute the principal curvature directions and magnitude of the given triangle mesh
  2. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  3. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  4. // Inputs:
  5. // V eigen matrix #V by 3
  6. // F #F by 3 list of mesh faces (must be triangles)
  7. // radius controls the size of the neighbourhood used, 1 = average edge lenght
  8. //
  9. // Outputs:
  10. // PD1 #V by 3 maximal curvature direction for each vertex.
  11. // PD2 #V by 3 minimal curvature direction for each vertex.
  12. // PV1 #V by 1 maximal curvature value for each vertex.
  13. // PV2 #V by 1 minimal curvature value for each vertex.
  14. //
  15. // See also: average_onto_faces, average_onto_vertices
  16. //
  17. // This function has been developed by: Nikolas De Giorgis, Luigi Rocca and Enrico Puppo.
  18. // The algorithm is based on:
  19. // Efficient Multi-scale Curvature and Crease Estimation
  20. // Daniele Panozzo, Enrico Puppo, Luigi Rocca
  21. // GraVisMa, 2010)igl_Qu8mg5v7";
  22. const char *__doc_igl_local_basis = R"igl_Qu8mg5v7(// Compute a local orthogonal reference system for each triangle in the given mesh
  23. // Templates:
  24. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  25. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  26. // Inputs:
  27. // V eigen matrix #V by 3
  28. // F #F by 3 list of mesh faces (must be triangles)
  29. // Outputs:
  30. // B1 eigen matrix #F by 3, each vector is tangent to the triangle
  31. // B2 eigen matrix #F by 3, each vector is tangent to the triangle and perpendicular to B1
  32. // B3 eigen matrix #F by 3, normal of the triangle
  33. //
  34. // See also: adjacency_matrix)igl_Qu8mg5v7";
  35. const char *__doc_igl_cotmatrix = R"igl_Qu8mg5v7(// Constructs the cotangent stiffness matrix (discrete laplacian) for a given
  36. // mesh (V,F).
  37. //
  38. // Templates:
  39. // DerivedV derived type of eigen matrix for V (e.g. derived from
  40. // MatrixXd)
  41. // DerivedF derived type of eigen matrix for F (e.g. derived from
  42. // MatrixXi)
  43. // Scalar scalar type for eigen sparse matrix (e.g. double)
  44. // Inputs:
  45. // V #V by dim list of mesh vertex positions
  46. // F #F by simplex_size list of mesh faces (must be triangles)
  47. // Outputs:
  48. // L #V by #V cotangent matrix, each row i corresponding to V(i,:)
  49. //
  50. // See also: adjacency_matrix
  51. //
  52. // Note: This Laplacian uses the convention that diagonal entries are
  53. // **minus** the sum of off-diagonal entries. The diagonal entries are
  54. // therefore in general negative and the matrix is **negative** semi-definite
  55. // (immediately, -L is **positive** semi-definite)
  56. //
  57. // Known bugs: off by 1e-16 on regular grid. I think its a problem of
  58. // arithmetic order in cotmatrix_entries.h: C(i,e) = (arithmetic)/dblA/4)igl_Qu8mg5v7";
  59. const char *__doc_igl_floor = R"igl_Qu8mg5v7(// Floor a given matrix to nearest integers
  60. //
  61. // Inputs:
  62. // X m by n matrix of scalars
  63. // Outputs:
  64. // Y m by n matrix of floored integers)igl_Qu8mg5v7";
  65. const char *__doc_igl_slice = R"igl_Qu8mg5v7(// Act like the matlab X(row_indices,col_indices) operator, where
  66. // row_indices, col_indices are non-negative integer indices.
  67. //
  68. // Inputs:
  69. // X m by n matrix
  70. // R list of row indices
  71. // C list of column indices
  72. // Output:
  73. // Y #R by #C matrix
  74. //
  75. // See also: slice_mask)igl_Qu8mg5v7";
  76. const char *__doc_igl_per_face_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  77. // Inputs:
  78. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  79. // F #F by 3 eigen Matrix of face (triangle) indices
  80. // Z 3 vector normal given to faces with degenerate normal.
  81. // Output:
  82. // N #F by 3 eigen Matrix of mesh face (triangle) 3D normals
  83. //
  84. // Example:
  85. // // Give degenerate faces (1/3,1/3,1/3)^0.5
  86. // per_face_normals(V,F,Vector3d(1,1,1).normalized(),N);)igl_Qu8mg5v7";
  87. const char *__doc_igl_per_face_normals_stable = R"igl_Qu8mg5v7(// Special version where order of face indices is guaranteed not to effect
  88. // output.)igl_Qu8mg5v7";
  89. const char *__doc_igl_readOFF = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  90. // and texture coordinates. Mesh may have faces of any number of degree
  91. //
  92. // Templates:
  93. // Scalar type for positions and vectors (will be read as double and cast
  94. // to Scalar)
  95. // Index type for indices (will be read as int and cast to Index)
  96. // Inputs:
  97. // str path to .obj file
  98. // Outputs:
  99. // V double matrix of vertex positions #V by 3
  100. // F #F list of face indices into vertex positions
  101. // TC double matrix of texture coordinats #TC by 2
  102. // FTC #F list of face indices into vertex texture coordinates
  103. // N double matrix of corner normals #N by 3
  104. // FN #F list of face indices into vertex normals
  105. // Returns true on success, false on errors)igl_Qu8mg5v7";
  106. const char *__doc_igl_per_vertex_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  107. // Inputs:
  108. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  109. // F #F by 3 eigne Matrix of face (triangle) indices
  110. // weighting Weighting type
  111. // Output:
  112. // N #V by 3 eigen Matrix of mesh vertex 3D normals)igl_Qu8mg5v7";
  113. const char *__doc_igl_sortrows = R"igl_Qu8mg5v7(// Act like matlab's [Y,I] = sortrows(X)
  114. //
  115. // Templates:
  116. // DerivedX derived scalar type, e.g. MatrixXi or MatrixXd
  117. // DerivedI derived integer type, e.g. MatrixXi
  118. // Inputs:
  119. // X m by n matrix whose entries are to be sorted
  120. // ascending sort ascending (true, matlab default) or descending (false)
  121. // Outputs:
  122. // Y m by n matrix whose entries are sorted (**should not** be same
  123. // reference as X)
  124. // I m list of indices so that
  125. // Y = X(I,:);)igl_Qu8mg5v7";
  126. const char *__doc_igl_barycenter = R"igl_Qu8mg5v7(// Computes the barycenter of every simplex
  127. //
  128. // Inputs:
  129. // V #V x dim matrix of vertex coordinates
  130. // F #F x simplex_size matrix of indices of simplex corners into V
  131. // Output:
  132. // BC #F x dim matrix of 3d vertices
  133. //)igl_Qu8mg5v7";
  134. const char *__doc_igl_jet = R"igl_Qu8mg5v7(// JET like MATLAB's jet
  135. //
  136. // Inputs:
  137. // m number of colors
  138. // Outputs:
  139. // J m by list of RGB colors between 0 and 1
  140. //
  141. //#ifndef IGL_NO_EIGEN
  142. // void jet(const int m, Eigen::MatrixXd & J);
  143. //#endif
  144. // Wrapper for directly computing [r,g,b] values for a given factor f between
  145. // 0 and 1
  146. //
  147. // Inputs:
  148. // f factor determining color value as if 0 was min and 1 was max
  149. // Outputs:
  150. // r red value
  151. // g green value
  152. // b blue value)igl_Qu8mg5v7";
  153. const char *__doc_igl_cat = R"igl_Qu8mg5v7(// Perform concatenation of a two matrices along a single dimension
  154. // If dim == 1, then C = [A;B]. If dim == 2 then C = [A B]
  155. //
  156. // Template:
  157. // Scalar scalar data type for sparse matrices like double or int
  158. // Mat matrix type for all matrices (e.g. MatrixXd, SparseMatrix)
  159. // MatC matrix type for ouput matrix (e.g. MatrixXd) needs to support
  160. // resize
  161. // Inputs:
  162. // A first input matrix
  163. // B second input matrix
  164. // dim dimension along which to concatenate, 0 or 1
  165. // Outputs:
  166. // C output matrix
  167. // )igl_Qu8mg5v7";
  168. const char *__doc_igl_eigs = R"igl_Qu8mg5v7(See eigs for the documentation.)igl_Qu8mg5v7";
  169. const char *__doc_igl_per_corner_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  170. // Inputs:
  171. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  172. // F #F by 3 eigne Matrix of face (triangle) indices
  173. // corner_threshold threshold in degrees on sharp angles
  174. // Output:
  175. // CN #F*3 by 3 eigen Matrix of mesh vertex 3D normals, where the normal
  176. // for corner F(i,j) is at CN(i*3+j,:) )igl_Qu8mg5v7";
  177. const char *__doc_igl_massmatrix = R"igl_Qu8mg5v7(// Constructs the mass (area) matrix for a given mesh (V,F).
  178. //
  179. // Templates:
  180. // DerivedV derived type of eigen matrix for V (e.g. derived from
  181. // MatrixXd)
  182. // DerivedF derived type of eigen matrix for F (e.g. derived from
  183. // MatrixXi)
  184. // Scalar scalar type for eigen sparse matrix (e.g. double)
  185. // Inputs:
  186. // V #V by dim list of mesh vertex positions
  187. // F #F by simplex_size list of mesh faces (must be triangles)
  188. // type one of the following ints:
  189. // MASSMATRIX_TYPE_BARYCENTRIC barycentric
  190. // MASSMATRIX_TYPE_VORONOI voronoi-hybrid {default}
  191. // MASSMATRIX_TYPE_FULL full {not implemented}
  192. // Outputs:
  193. // M #V by #V mass matrix
  194. //
  195. // See also: adjacency_matrix
  196. //)igl_Qu8mg5v7";
  197. const char *__doc_igl_colon = R"igl_Qu8mg5v7(// Colon operator like matlab's colon operator. Enumerats values between low
  198. // and hi with step step.
  199. // Templates:
  200. // L should be a eigen matrix primitive type like int or double
  201. // S should be a eigen matrix primitive type like int or double
  202. // H should be a eigen matrix primitive type like int or double
  203. // T should be a eigen matrix primitive type like int or double
  204. // Inputs:
  205. // low starting value if step is valid then this is *always* the first
  206. // element of I
  207. // step step difference between sequential elements returned in I,
  208. // remember this will be cast to template T at compile time. If low<hi
  209. // then step must be positive. If low>hi then step must be negative.
  210. // Otherwise I will be set to empty.
  211. // hi ending value, if (hi-low)%step is zero then this will be the last
  212. // element in I. If step is positive there will be no elements greater
  213. // than hi, vice versa if hi<low
  214. // Output:
  215. // I list of values from low to hi with step size step)igl_Qu8mg5v7";
  216. const char *__doc_igl_fit_rotations = R"igl_Qu8mg5v7(// Known issues: This seems to be implemented in Eigen/Geometry:
  217. // Eigen::umeyama
  218. //
  219. // FIT_ROTATIONS Given an input mesh and new positions find rotations for
  220. // every covariance matrix in a stack of covariance matrices
  221. //
  222. // Inputs:
  223. // S nr*dim by dim stack of covariance matrices
  224. // single_precision whether to use single precision (faster)
  225. // Outputs:
  226. // R dim by dim * nr list of rotations
  227. //)igl_Qu8mg5v7";
  228. const char *__doc_igl_fit_rotations_planar = R"igl_Qu8mg5v7(// FIT_ROTATIONS Given an input mesh and new positions find 2D rotations for
  229. // every vertex that best maps its one ring to the new one ring
  230. //
  231. // Inputs:
  232. // S nr*dim by dim stack of covariance matrices, third column and every
  233. // third row will be ignored
  234. // Outputs:
  235. // R dim by dim * nr list of rotations, third row and third column of each
  236. // rotation will just be identity
  237. //)igl_Qu8mg5v7";
  238. const char *__doc_igl_fit_rotations_SSE = R"igl_Qu8mg5v7(See fit_rotations_SSE for the documentation.)igl_Qu8mg5v7";
  239. const char *__doc_igl_rotate_vectors = R"igl_Qu8mg5v7(// Rotate the vectors V by A radiants on the tangent plane spanned by B1 and
  240. // B2
  241. //
  242. // Inputs:
  243. // V #V by 3 eigen Matrix of vectors
  244. // A #V eigen vector of rotation angles or a single angle to be applied
  245. // to all vectors
  246. // B1 #V by 3 eigen Matrix of base vector 1
  247. // B2 #V by 3 eigen Matrix of base vector 2
  248. //
  249. // Output:
  250. // Returns the rotated vectors
  251. //)igl_Qu8mg5v7";
  252. const char *__doc_igl_read_triangle_mesh = R"igl_Qu8mg5v7(// read mesh from an ascii file with automatic detection of file format.
  253. // supported: obj, off, stl, wrl, ply, mesh)
  254. //
  255. // Templates:
  256. // Scalar type for positions and vectors (will be read as double and cast
  257. // to Scalar)
  258. // Index type for indices (will be read as int and cast to Index)
  259. // Inputs:
  260. // str path to file
  261. // Outputs:
  262. // V eigen double matrix #V by 3
  263. // F eigen int matrix #F by 3
  264. // Returns true iff success)igl_Qu8mg5v7";
  265. const char *__doc_igl_gaussian_curvature = R"igl_Qu8mg5v7(// Compute discrete local integral gaussian curvature (angle deficit, without
  266. // averaging by local area).
  267. //
  268. // Inputs:
  269. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  270. // F #F by 3 eigen Matrix of face (triangle) indices
  271. // Output:
  272. // K #V by 1 eigen Matrix of discrete gaussian curvature values
  273. //)igl_Qu8mg5v7";
  274. const char *__doc_igl_avg_edge_length = R"igl_Qu8mg5v7(// Compute the average edge length for the given triangle mesh
  275. // Templates:
  276. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  277. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  278. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  279. // Inputs:
  280. // V eigen matrix #V by 3
  281. // F #F by simplex-size list of mesh faces (must be simplex)
  282. // Outputs:
  283. // l average edge length
  284. //
  285. // See also: adjacency_matrix)igl_Qu8mg5v7";
  286. const char *__doc_igl_barycentric_coordinates = R"igl_Qu8mg5v7(// Compute barycentric coordinates in a tet
  287. //
  288. // Inputs:
  289. // P #P by 3 Query points in 3d
  290. // A #P by 3 Tet corners in 3d
  291. // B #P by 3 Tet corners in 3d
  292. // C #P by 3 Tet corners in 3d
  293. // D #P by 3 Tet corners in 3d
  294. // Outputs:
  295. // L #P by 4 list of barycentric coordinates
  296. // )igl_Qu8mg5v7";
  297. const char *__doc_igl_lscm = R"igl_Qu8mg5v7(// Compute a Least-squares conformal map parametrization (equivalently
  298. // derived in "Intrinsic Parameterizations of Surface Meshes" [Desbrun et al.
  299. // 2002] and "Least Squares Conformal Maps for Automatic Texture Atlas
  300. // Generation" [Lévy et al. 2002]), though this implementation follows the
  301. // derivation in: "Spectral Conformal Parameterization" [Mullen et al. 2008]
  302. // (note, this does **not** implement the Eigen-decomposition based method in
  303. // [Mullen et al. 2008], which is not equivalent). Input should be a manifold
  304. // mesh (also no unreferenced vertices) and "boundary" (fixed vertices) `b`
  305. // should contain at least two vertices per connected component.
  306. //
  307. // Inputs:
  308. // V #V by 3 list of mesh vertex positions
  309. // F #F by 3 list of mesh faces (must be triangles)
  310. // b #b boundary indices into V
  311. // bc #b by 3 list of boundary values
  312. // Outputs:
  313. // UV #V by 2 list of 2D mesh vertex positions in UV space
  314. // Returns true only on solver success.
  315. //)igl_Qu8mg5v7";
  316. const char *__doc_igl_find_cross_field_singularities = R"igl_Qu8mg5v7(// Inputs:
  317. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  318. // F #F by 3 eigen Matrix of face (quad) indices
  319. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  320. // across all face edges
  321. // Output:
  322. // isSingularity #V by 1 boolean eigen Vector indicating the presence of a singularity on a vertex
  323. // singularityIndex #V by 1 integer eigen Vector containing the singularity indices
  324. //)igl_Qu8mg5v7";
  325. const char *__doc_igl_upsample = R"igl_Qu8mg5v7(// Subdivide a mesh without moving vertices: loop subdivision but odd
  326. // vertices stay put and even vertices are just edge midpoints
  327. //
  328. // Templates:
  329. // MatV matrix for vertex positions, e.g. MatrixXd
  330. // MatF matrix for vertex positions, e.g. MatrixXi
  331. // Inputs:
  332. // V #V by dim mesh vertices
  333. // F #F by 3 mesh triangles
  334. // Outputs:
  335. // NV new vertex positions, V is guaranteed to be at top
  336. // NF new list of face indices
  337. //
  338. // NOTE: V should not be the same as NV,
  339. // NOTE: F should not be the same as NF, use other proto
  340. //
  341. // Known issues:
  342. // - assumes (V,F) is edge-manifold.)igl_Qu8mg5v7";
  343. const char *__doc_igl_point_mesh_squared_distance = R"igl_Qu8mg5v7(// Compute distances from a set of points P to a triangle mesh (V,F)
  344. //
  345. // Inputs:
  346. // P #P by 3 list of query point positions
  347. // V #V by 3 list of vertex positions
  348. // Ele #Ele by (3|2|1) list of (triangle|edge|point) indices
  349. // Outputs:
  350. // sqrD #P list of smallest squared distances
  351. // I #P list of primitive indices corresponding to smallest distances
  352. // C #P by 3 list of closest points
  353. //
  354. // Known bugs: This only computes distances to given primitivess. So
  355. // unreferenced vertices are ignored. However, degenerate primitives are
  356. // handled correctly: triangle [1 2 2] is treated as a segment [1 2], and
  357. // triangle [1 1 1] is treated as a point. So one _could_ add extra
  358. // combinatorially degenerate rows to Ele for all unreferenced vertices to
  359. // also get distances to points.)igl_Qu8mg5v7";
  360. const char *__doc_igl_parula = R"igl_Qu8mg5v7(// PARULA like MATLAB's parula
  361. //
  362. // Inputs:
  363. // m number of colors
  364. // Outputs:
  365. // J m by list of RGB colors between 0 and 1
  366. //
  367. // Wrapper for directly computing [r,g,b] values for a given factor f between
  368. // 0 and 1
  369. //
  370. // Inputs:
  371. // f factor determining color value as if 0 was min and 1 was max
  372. // Outputs:
  373. // r red value
  374. // g green value
  375. // b blue value)igl_Qu8mg5v7";
  376. const char *__doc_igl_setdiff = R"igl_Qu8mg5v7(// Set difference of elements of matrices
  377. //
  378. // Inputs:
  379. // A m-long vector of indices
  380. // B n-long vector of indices
  381. // Outputs:
  382. // C (k<=m)-long vector of unique elements appearing in A but not in B
  383. // IA (k<=m)-long list of indices into A so that C = A(IA)
  384. //)igl_Qu8mg5v7";
  385. const char *__doc_igl_comb_frame_field = R"igl_Qu8mg5v7(// Inputs:
  386. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  387. // F #F by 4 eigen Matrix of face (quad) indices
  388. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  389. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  390. // BIS1_combed #F by 3 eigen Matrix of the first combed bisector field vector
  391. // BIS2_combed #F by 3 eigen Matrix of the second combed bisector field vector
  392. // Output:
  393. // PD1_combed #F by 3 eigen Matrix of the first combed cross field vector
  394. // PD2_combed #F by 3 eigen Matrix of the second combed cross field vector
  395. //)igl_Qu8mg5v7";
  396. const char *__doc_igl_map_vertices_to_circle = R"igl_Qu8mg5v7(// Map the vertices whose indices are in a given boundary loop (bnd) on the
  397. // unit circle with spacing proportional to the original boundary edge
  398. // lengths.
  399. //
  400. // Inputs:
  401. // V #V by dim list of mesh vertex positions
  402. // b #W list of vertex ids
  403. // Outputs:
  404. // UV #W by 2 list of 2D position on the unit circle for the vertices in b)igl_Qu8mg5v7";
  405. const char *__doc_igl_writeOBJ = R"igl_Qu8mg5v7(// Write a mesh in an ascii obj file
  406. // Inputs:
  407. // str path to outputfile
  408. // V #V by 3 mesh vertex positions
  409. // F #F by 3|4 mesh indices into V
  410. // CN #CN by 3 normal vectors
  411. // FN #F by 3|4 corner normal indices into CN
  412. // TC #TC by 2|3 texture coordinates
  413. // FTC #F by 3|4 corner texture coord indices into TC
  414. // Returns true on success, false on error)igl_Qu8mg5v7";
  415. const char *__doc_igl_active_set = R"igl_Qu8mg5v7(// Known Bugs: rows of [Aeq;Aieq] **must** be linearly independent. Should be
  416. // using QR decomposition otherwise:
  417. // http://www.okstate.edu/sas/v8/sashtml/ormp/chap5/sect32.htm
  418. //
  419. // ACTIVE_SET Minimize quadratic energy
  420. //
  421. // 0.5*Z'*A*Z + Z'*B + C with constraints
  422. //
  423. // that Z(known) = Y, optionally also subject to the constraints Aeq*Z = Beq,
  424. // and further optionally subject to the linear inequality constraints that
  425. // Aieq*Z <= Bieq and constant inequality constraints lx <= x <= ux
  426. //
  427. // Inputs:
  428. // A n by n matrix of quadratic coefficients
  429. // B n by 1 column of linear coefficients
  430. // known list of indices to known rows in Z
  431. // Y list of fixed values corresponding to known rows in Z
  432. // Aeq meq by n list of linear equality constraint coefficients
  433. // Beq meq by 1 list of linear equality constraint constant values
  434. // Aieq mieq by n list of linear inequality constraint coefficients
  435. // Bieq mieq by 1 list of linear inequality constraint constant values
  436. // lx n by 1 list of lower bounds [] implies -Inf
  437. // ux n by 1 list of upper bounds [] implies Inf
  438. // params struct of additional parameters (see below)
  439. // Z if not empty, is taken to be an n by 1 list of initial guess values
  440. // (see output)
  441. // Outputs:
  442. // Z n by 1 list of solution values
  443. // Returns true on success, false on error
  444. //
  445. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  446. // secs, igl/min_quad_with_fixed.h 7.1 secs
  447. //)igl_Qu8mg5v7";
  448. const char *__doc_igl_per_edge_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  449. // Inputs:
  450. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  451. // F #F by 3 eigen Matrix of face (triangle) indices
  452. // weight weighting type
  453. // FN #F by 3 matrix of 3D face normals per face
  454. // Output:
  455. // N #2 by 3 matrix of mesh edge 3D normals per row
  456. // E #E by 2 matrix of edge indices per row
  457. // EMAP #E by 1 matrix of indices from all edges to E
  458. //)igl_Qu8mg5v7";
  459. const char *__doc_igl_covariance_scatter_matrix = R"igl_Qu8mg5v7(// Construct the covariance scatter matrix for a given arap energy
  460. // Inputs:
  461. // V #V by Vdim list of initial domain positions
  462. // F #F by 3 list of triangle indices into V
  463. // energy ARAPEnergyType enum value defining which energy is being used.
  464. // See ARAPEnergyType.h for valid options and explanations.
  465. // Outputs:
  466. // CSM dim*#V/#F by dim*#V sparse matrix containing special laplacians along
  467. // the diagonal so that when multiplied by V gives covariance matrix
  468. // elements, can be used to speed up covariance matrix computation)igl_Qu8mg5v7";
  469. const char *__doc_igl_boundary_facets = R"igl_Qu8mg5v7(// BOUNDARY_FACETS Determine boundary faces (edges) of tetrahedra (triangles)
  470. // stored in T (analogous to qptoolbox's `outline` and `boundary_faces`).
  471. //
  472. // Templates:
  473. // IntegerT integer-value: e.g. int
  474. // IntegerF integer-value: e.g. int
  475. // Input:
  476. // T tetrahedron (triangle) index list, m by 4 (3), where m is the number of tetrahedra
  477. // Output:
  478. // F list of boundary faces, n by 3 (2), where n is the number of boundary faces
  479. //
  480. //)igl_Qu8mg5v7";
  481. const char *__doc_igl_compute_frame_field_bisectors = R"igl_Qu8mg5v7(// Compute bisectors of a frame field defined on mesh faces
  482. // Inputs:
  483. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  484. // F #F by 3 eigen Matrix of face (triangle) indices
  485. // B1 #F by 3 eigen Matrix of face (triangle) base vector 1
  486. // B2 #F by 3 eigen Matrix of face (triangle) base vector 2
  487. // PD1 #F by 3 eigen Matrix of the first per face frame field vector
  488. // PD2 #F by 3 eigen Matrix of the second per face frame field vector
  489. // Output:
  490. // BIS1 #F by 3 eigen Matrix of the first per face frame field bisector
  491. // BIS2 #F by 3 eigen Matrix of the second per face frame field bisector
  492. //)igl_Qu8mg5v7";
  493. const char *__doc_igl_edge_lengths = R"igl_Qu8mg5v7(// Constructs a list of lengths of edges opposite each index in a face
  494. // (triangle/tet) list
  495. //
  496. // Templates:
  497. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  498. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  499. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  500. // Inputs:
  501. // V eigen matrix #V by 3
  502. // F #F by 2 list of mesh edges
  503. // or
  504. // F #F by 3 list of mesh faces (must be triangles)
  505. // or
  506. // T #T by 4 list of mesh elements (must be tets)
  507. // Outputs:
  508. // L #F by {1|3|6} list of edge lengths
  509. // for edges, column of lengths
  510. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  511. // for tets, columns correspond to edges
  512. // [3 0],[3 1],[3 2],[1 2],[2 0],[0 1]
  513. //)igl_Qu8mg5v7";
  514. const char *__doc_igl_readOBJ = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  515. // and texture coordinates. Mesh may have faces of any number of degree
  516. //
  517. // Templates:
  518. // Scalar type for positions and vectors (will be read as double and cast
  519. // to Scalar)
  520. // Index type for indices (will be read as int and cast to Index)
  521. // Inputs:
  522. // str path to .obj file
  523. // Outputs:
  524. // V double matrix of vertex positions #V by 3
  525. // TC double matrix of texture coordinats #TC by 2
  526. // N double matrix of corner normals #N by 3
  527. // F #F list of face indices into vertex positions
  528. // FTC #F list of face indices into vertex texture coordinates
  529. // FN #F list of face indices into vertex normals
  530. // Returns true on success, false on errors)igl_Qu8mg5v7";
  531. const char *__doc_igl_cut_mesh_from_singularities = R"igl_Qu8mg5v7(// Given a mesh (V,F) and the integer mismatch of a cross field per edge
  532. // (MMatch), finds the cut_graph connecting the singularities (seams) and the
  533. // degree of the singularities singularity_index
  534. //
  535. // Input:
  536. // V #V by 3 list of mesh vertex positions
  537. // F #F by 3 list of faces
  538. // MMatch #F by 3 list of per corner integer mismatch
  539. // Outputs:
  540. // seams #F by 3 list of per corner booleans that denotes if an edge is a
  541. // seam or not
  542. //)igl_Qu8mg5v7";
  543. const char *__doc_igl_readDMAT = R"igl_Qu8mg5v7(See readDMAT for the documentation.)igl_Qu8mg5v7";
  544. const char *__doc_igl_doublearea = R"igl_Qu8mg5v7(// DOUBLEAREA computes twice the area for each input triangle[quad]
  545. //
  546. // Templates:
  547. // DerivedV derived type of eigen matrix for V (e.g. derived from
  548. // MatrixXd)
  549. // DerivedF derived type of eigen matrix for F (e.g. derived from
  550. // MatrixXi)
  551. // DeriveddblA derived type of eigen matrix for dblA (e.g. derived from
  552. // MatrixXd)
  553. // Inputs:
  554. // V #V by dim list of mesh vertex positions
  555. // F #F by simplex_size list of mesh faces (must be triangles or quads)
  556. // Outputs:
  557. // dblA #F list of triangle[quad] double areas (SIGNED only for 2D input)
  558. //
  559. // Known bug: For dim==3 complexity is O(#V + #F)!! Not just O(#F). This is a big deal
  560. // if you have 1million unreferenced vertices and 1 face)igl_Qu8mg5v7";
  561. const char *__doc_igl_doublearea_single = R"igl_Qu8mg5v7(// Single triangle in 2D!
  562. //
  563. // This should handle streams of corners not just single corners)igl_Qu8mg5v7";
  564. const char *__doc_igl_doublearea_quad = R"igl_Qu8mg5v7(// DOUBLEAREA_QUAD computes twice the area for each input quadrilateral
  565. //
  566. // Inputs:
  567. // V #V by dim list of mesh vertex positions
  568. // F #F by simplex_size list of mesh faces (must be quadrilaterals)
  569. // Outputs:
  570. // dblA #F list of quadrilateral double areas
  571. //)igl_Qu8mg5v7";
  572. const char *__doc_igl_min_quad_with_fixed_precompute = R"igl_Qu8mg5v7(// Known Bugs: rows of Aeq **should probably** be linearly independent.
  573. // During precomputation, the rows of a Aeq are checked via QR. But in case
  574. // they're not then resulting probably will no longer be sparse: it will be
  575. // slow.
  576. //
  577. // MIN_QUAD_WITH_FIXED Minimize quadratic energy
  578. //
  579. // 0.5*Z'*A*Z + Z'*B + C with
  580. //
  581. // constraints that Z(known) = Y, optionally also subject to the constraints
  582. // Aeq*Z = Beq
  583. //
  584. // Templates:
  585. // T should be a eigen matrix primitive type like int or double
  586. // Inputs:
  587. // A n by n matrix of quadratic coefficients
  588. // known list of indices to known rows in Z
  589. // Y list of fixed values corresponding to known rows in Z
  590. // Aeq m by n list of linear equality constraint coefficients
  591. // pd flag specifying whether A(unknown,unknown) is positive definite
  592. // Outputs:
  593. // data factorization struct with all necessary information to solve
  594. // using min_quad_with_fixed_solve
  595. // Returns true on success, false on error
  596. //
  597. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  598. // secs, igl/min_quad_with_fixed.h 7.1 secs
  599. //)igl_Qu8mg5v7";
  600. const char *__doc_igl_min_quad_with_fixed_solve = R"igl_Qu8mg5v7(// Solves a system previously factored using min_quad_with_fixed_precompute
  601. //
  602. // Template:
  603. // T type of sparse matrix (e.g. double)
  604. // DerivedY type of Y (e.g. derived from VectorXd or MatrixXd)
  605. // DerivedZ type of Z (e.g. derived from VectorXd or MatrixXd)
  606. // Inputs:
  607. // data factorization struct with all necessary precomputation to solve
  608. // B n by 1 column of linear coefficients
  609. // Y b by 1 list of constant fixed values
  610. // Beq m by 1 list of linear equality constraint constant values
  611. // Outputs:
  612. // Z n by cols solution
  613. // sol #unknowns+#lagrange by cols solution to linear system
  614. // Returns true on success, false on error)igl_Qu8mg5v7";
  615. const char *__doc_igl_min_quad_with_fixed = R"igl_Qu8mg5v7(See min_quad_with_fixed for the documentation.)igl_Qu8mg5v7";
  616. const char *__doc_igl_writeMESH = R"igl_Qu8mg5v7(// save a tetrahedral volume mesh to a .mesh file
  617. //
  618. // Templates:
  619. // Scalar type for positions and vectors (will be cast as double)
  620. // Index type for indices (will be cast to int)
  621. // Input:
  622. // mesh_file_name path of .mesh file
  623. // V double matrix of vertex positions #V by 3
  624. // T #T list of tet indices into vertex positions
  625. // F #F list of face indices into vertex positions
  626. //
  627. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  628. const char *__doc_igl_unique = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X)
  629. //
  630. // Templates:
  631. // T comparable type T
  632. // Inputs:
  633. // A #A vector of type T
  634. // Outputs:
  635. // C #C vector of unique entries in A
  636. // IA #C index vector so that C = A(IA);
  637. // IC #A index vector so that A = C(IC);)igl_Qu8mg5v7";
  638. const char *__doc_igl_unique_rows = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X,'rows')
  639. //
  640. // Templates:
  641. // DerivedA derived scalar type, e.g. MatrixXi or MatrixXd
  642. // DerivedIA derived integer type, e.g. MatrixXi
  643. // DerivedIC derived integer type, e.g. MatrixXi
  644. // Inputs:
  645. // A m by n matrix whose entries are to unique'd according to rows
  646. // Outputs:
  647. // C #C vector of unique rows in A
  648. // IA #C index vector so that C = A(IA,:);
  649. // IC #A index vector so that A = C(IC,:);)igl_Qu8mg5v7";
  650. const char *__doc_igl_arap_precomputation = R"igl_Qu8mg5v7(// Compute necessary information to start using an ARAP deformation
  651. //
  652. // Inputs:
  653. // V #V by dim list of mesh positions
  654. // F #F by simplex-size list of triangle|tet indices into V
  655. // dim dimension being used at solve time. For deformation usually dim =
  656. // V.cols(), for surface parameterization V.cols() = 3 and dim = 2
  657. // b #b list of "boundary" fixed vertex indices into V
  658. // Outputs:
  659. // data struct containing necessary precomputation)igl_Qu8mg5v7";
  660. const char *__doc_igl_arap_solve = R"igl_Qu8mg5v7(// Inputs:
  661. // bc #b by dim list of boundary conditions
  662. // data struct containing necessary precomputation and parameters
  663. // U #V by dim initial guess)igl_Qu8mg5v7";
  664. const char *__doc_igl_cross_field_missmatch = R"igl_Qu8mg5v7(// Inputs:
  665. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  666. // F #F by 3 eigen Matrix of face (quad) indices
  667. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  668. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  669. // isCombed boolean, specifying whether the field is combed (i.e. matching has been precomputed.
  670. // If not, the field is combed first.
  671. // Output:
  672. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  673. // across all face edges
  674. //)igl_Qu8mg5v7";
  675. const char *__doc_igl_grad = R"igl_Qu8mg5v7(// Gradient of a scalar function defined on piecewise linear elements (mesh)
  676. // is constant on each triangle i,j,k:
  677. // grad(Xijk) = (Xj-Xi) * (Vi - Vk)^R90 / 2A + (Xk-Xi) * (Vj - Vi)^R90 / 2A
  678. // where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
  679. // i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
  680. // 90 degrees
  681. //)igl_Qu8mg5v7";
  682. const char *__doc_igl_slice_into = R"igl_Qu8mg5v7(// Act like the matlab Y(row_indices,col_indices) = X
  683. //
  684. // Inputs:
  685. // X xm by xn rhs matrix
  686. // R list of row indices
  687. // C list of column indices
  688. // Y ym by yn lhs matrix
  689. // Output:
  690. // Y ym by yn lhs matrix, same as input but Y(R,C) = X)igl_Qu8mg5v7";
  691. const char *__doc_igl_slice_tets = R"igl_Qu8mg5v7(// SLICE_TETS Slice through a tet mesh (V,T) along a given plane (via its
  692. // implicit equation).
  693. //
  694. // Inputs:
  695. // V #V by 3 list of tet mesh vertices
  696. // T #T by 4 list of tet indices into V
  697. // plane list of 4 coefficients in the plane equation: [x y z 1]'*plane = 0
  698. // Optional:
  699. // 'Manifold' followed by whether to stitch together triangles into a
  700. // manifold mesh {true}: results in more compact U but slightly slower.
  701. // Outputs:
  702. // U #U by 3 list of triangle mesh vertices along slice
  703. // G #G by 3 list of triangles indices into U
  704. // J #G list of indices into T revealing from which tet each faces comes
  705. // BC #U by #V list of barycentric coordinates (or more generally: linear
  706. // interpolation coordinates) so that U = BC*V
  707. // )igl_Qu8mg5v7";
  708. const char *__doc_igl_n_polyvector = R"igl_Qu8mg5v7(// Inputs:
  709. // v0, v1 the two #3 by 1 vectors
  710. // normalized boolean, if false, then the vectors are normalized prior to the calculation
  711. // Output:
  712. // 3 by 3 rotation matrix that takes v0 to v1
  713. //)igl_Qu8mg5v7";
  714. const char *__doc_igl_harmonic = R"igl_Qu8mg5v7(// Compute k-harmonic weight functions "coordinates".
  715. //
  716. //
  717. // Inputs:
  718. // V #V by dim vertex positions
  719. // F #F by simplex-size list of element indices
  720. // b #b boundary indices into V
  721. // bc #b by #W list of boundary values
  722. // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
  723. // Outputs:
  724. // W #V by #W list of weights
  725. //)igl_Qu8mg5v7";
  726. const char *__doc_igl_boundary_loop = R"igl_Qu8mg5v7(// Compute list of ordered boundary loops for a manifold mesh.
  727. //
  728. // Templates:
  729. // Index index type
  730. // Inputs:
  731. // F #V by dim list of mesh faces
  732. // Outputs:
  733. // L list of loops where L[i] = ordered list of boundary vertices in loop i
  734. //)igl_Qu8mg5v7";
  735. const char *__doc_igl_polar_svd = R"igl_Qu8mg5v7(// Computes the polar decomposition (R,T) of a matrix A using SVD singular
  736. // value decomposition
  737. //
  738. // Inputs:
  739. // A 3 by 3 matrix to be decomposed
  740. // Outputs:
  741. // R 3 by 3 rotation matrix part of decomposition (**always rotataion**)
  742. // T 3 by 3 stretch matrix part of decomposition
  743. // U 3 by 3 left-singular vectors
  744. // S 3 by 1 singular values
  745. // V 3 by 3 right-singular vectors
  746. //
  747. //)igl_Qu8mg5v7";
  748. const char *__doc_igl_comb_cross_field = R"igl_Qu8mg5v7(// Inputs:
  749. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  750. // F #F by 4 eigen Matrix of face (quad) indices
  751. // PD1in #F by 3 eigen Matrix of the first per face cross field vector
  752. // PD2in #F by 3 eigen Matrix of the second per face cross field vector
  753. // Output:
  754. // PD1out #F by 3 eigen Matrix of the first combed cross field vector
  755. // PD2out #F by 3 eigen Matrix of the second combed cross field vector
  756. //)igl_Qu8mg5v7";
  757. const char *__doc_igl_invert_diag = R"igl_Qu8mg5v7(// Templates:
  758. // T should be a eigen sparse matrix primitive type like int or double
  759. // Inputs:
  760. // X an m by n sparse matrix
  761. // Outputs:
  762. // Y an m by n sparse matrix)igl_Qu8mg5v7";
  763. const char *__doc_igl_readMESH = R"igl_Qu8mg5v7(// load a tetrahedral volume mesh from a .mesh file
  764. //
  765. // Templates:
  766. // Scalar type for positions and vectors (will be read as double and cast
  767. // to Scalar)
  768. // Index type for indices (will be read as int and cast to Index)
  769. // Input:
  770. // mesh_file_name path of .mesh file
  771. // Outputs:
  772. // V double matrix of vertex positions #V by 3
  773. // T #T list of tet indices into vertex positions
  774. // F #F list of face indices into vertex positions
  775. //
  776. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  777. const char *__doc_igl_copyleft_comiso_miq = R"igl_Qu8mg5v7(// Inputs:
  778. // V #V by 3 list of mesh vertex 3D positions
  779. // F #F by 3 list of faces indices in V
  780. // PD1 #V by 3 first line of the Jacobian per triangle
  781. // PD2 #V by 3 second line of the Jacobian per triangle
  782. // (optional, if empty it will be a vector in the tangent plane orthogonal to PD1)
  783. // scale global scaling for the gradient (controls the quads resolution)
  784. // stiffness weight for the stiffness iterations
  785. // direct_round greedily round all integer variables at once (greatly improves optimization speed but lowers quality)
  786. // iter stiffness iterations (0 = no stiffness)
  787. // local_iter number of local iterations for the integer rounding
  788. // do_round enables the integer rounding (disabling it could be useful for debugging)
  789. // round_vertices id of additional vertices that should be snapped to integer coordinates
  790. // hard_features #H by 2 list of pairs of vertices that belongs to edges that should be snapped to integer coordinates
  791. //
  792. // Output:
  793. // UV #UV by 2 list of vertices in 2D
  794. // FUV #FUV by 3 list of face indices in UV
  795. //
  796. // TODO: rename the parameters name in the cpp consistenly
  797. // improve the handling of hard_features, right now it might fail in difficult cases)igl_Qu8mg5v7";
  798. const char *__doc_igl_copyleft_comiso_nrosy = R"igl_Qu8mg5v7(// Generate a N-RoSy field from a sparse set of constraints
  799. //
  800. // Inputs:
  801. // V #V by 3 list of mesh vertex coordinates
  802. // F #F by 3 list of mesh faces (must be triangles)
  803. // b #B by 1 list of constrained face indices
  804. // bc #B by 3 list of representative vectors for the constrained
  805. // faces
  806. // b_soft #S by 1 b for soft constraints
  807. // w_soft #S by 1 weight for the soft constraints (0-1)
  808. // bc_soft #S by 3 bc for soft constraints
  809. // N the degree of the N-RoSy vector field
  810. // soft the strenght of the soft contraints w.r.t. smoothness
  811. // (0 -> smoothness only, 1->constraints only)
  812. // Outputs:
  813. // R #F by 3 the representative vectors of the interpolated field
  814. // S #V by 1 the singularity index for each vertex (0 = regular))igl_Qu8mg5v7";