n_polyvector_general.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491
  1. // This file is part of libigl, a simple c++ geometry processing library.
  2. //
  3. // Copyright (C) 2014 Olga Diamanti <olga.diam@gmail.com>
  4. //
  5. // This Source Code Form is subject to the terms of the Mozilla Public License
  6. // v. 2.0. If a copy of the MPL was not distributed with this file, You can
  7. // obtain one at http://mozilla.org/MPL/2.0/.
  8. #include <igl/n_polyvector_general.h>
  9. #include <igl/edge_topology.h>
  10. #include <igl/local_basis.h>
  11. #include <igl/nchoosek.h>
  12. #include <igl/slice.h>
  13. #include <igl/polyroots.h>
  14. #include <Eigen/Sparse>
  15. #include <iostream>
  16. namespace igl {
  17. template <typename DerivedV, typename DerivedF>
  18. class GeneralPolyVectorFieldFinder
  19. {
  20. private:
  21. const Eigen::PlainObjectBase<DerivedV> &V;
  22. const Eigen::PlainObjectBase<DerivedF> &F; int numF;
  23. const int n;
  24. Eigen::MatrixXi EV; int numE;
  25. Eigen::MatrixXi F2E;
  26. Eigen::MatrixXi E2F;
  27. Eigen::VectorXd K;
  28. Eigen::VectorXi isBorderEdge;
  29. int numInteriorEdges;
  30. Eigen::Matrix<int,Eigen::Dynamic,2> E2F_int;
  31. Eigen::VectorXi indInteriorToFull;
  32. Eigen::VectorXi indFullToInterior;
  33. Eigen::PlainObjectBase<DerivedV> B1, B2, FN;
  34. IGL_INLINE void computek();
  35. IGL_INLINE void setFieldFromGeneralCoefficients(const std::vector<Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1>> &coeffs,
  36. std::vector<Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 2> > &pv);
  37. IGL_INLINE void computeCoefficientLaplacian(int n, Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &D);
  38. IGL_INLINE void getGeneralCoeffConstraints(const Eigen::VectorXi &isConstrained,
  39. const Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, Eigen::Dynamic> &cfW,
  40. int k,
  41. const Eigen::VectorXi &rootsIndex,
  42. Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1> &Ck);
  43. IGL_INLINE void precomputeInteriorEdges();
  44. IGL_INLINE void minQuadWithKnownMini(const Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &Q,
  45. const Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &f,
  46. const Eigen::VectorXi isConstrained,
  47. const Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic, 1> &xknown,
  48. Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic, 1> &x);
  49. public:
  50. IGL_INLINE GeneralPolyVectorFieldFinder(const Eigen::PlainObjectBase<DerivedV> &_V,
  51. const Eigen::PlainObjectBase<DerivedF> &_F,
  52. const int &_n);
  53. IGL_INLINE bool solve(const Eigen::VectorXi &isConstrained,
  54. const Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, Eigen::Dynamic> &cfW,
  55. const Eigen::VectorXi &rootsIndex,
  56. Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, Eigen::Dynamic> &output);
  57. };
  58. }
  59. template<typename DerivedV, typename DerivedF>
  60. IGL_INLINE igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::
  61. GeneralPolyVectorFieldFinder(const Eigen::PlainObjectBase<DerivedV> &_V,
  62. const Eigen::PlainObjectBase<DerivedF> &_F,
  63. const int &_n):
  64. V(_V),
  65. F(_F),
  66. numF(_F.rows()),
  67. n(_n)
  68. {
  69. igl::edge_topology(V,F,EV,F2E,E2F);
  70. numE = EV.rows();
  71. precomputeInteriorEdges();
  72. igl::local_basis(V,F,B1,B2,FN);
  73. computek();
  74. };
  75. template<typename DerivedV, typename DerivedF>
  76. IGL_INLINE void igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::
  77. precomputeInteriorEdges()
  78. {
  79. // Flag border edges
  80. numInteriorEdges = 0;
  81. isBorderEdge.setZero(numE,1);
  82. indFullToInterior = -1.*Eigen::VectorXi::Ones(numE,1);
  83. for(unsigned i=0; i<numE; ++i)
  84. {
  85. if ((E2F(i,0) == -1) || ((E2F(i,1) == -1)))
  86. isBorderEdge[i] = 1;
  87. else
  88. {
  89. indFullToInterior[i] = numInteriorEdges;
  90. numInteriorEdges++;
  91. }
  92. }
  93. E2F_int.resize(numInteriorEdges, 2);
  94. indInteriorToFull.setZero(numInteriorEdges,1);
  95. int ii = 0;
  96. for (int k=0; k<numE; ++k)
  97. {
  98. if (isBorderEdge[k])
  99. continue;
  100. E2F_int.row(ii) = E2F.row(k);
  101. indInteriorToFull[ii] = k;
  102. ii++;
  103. }
  104. }
  105. template<typename DerivedV, typename DerivedF>
  106. IGL_INLINE void igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::
  107. minQuadWithKnownMini(const Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &Q,
  108. const Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &f,
  109. const Eigen::VectorXi isConstrained,
  110. const Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic, 1> &xknown,
  111. Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic, 1> &x)
  112. {
  113. int N = Q.rows();
  114. int nc = xknown.rows();
  115. Eigen::VectorXi known; known.setZero(nc,1);
  116. Eigen::VectorXi unknown; unknown.setZero(N-nc,1);
  117. int indk = 0, indu = 0;
  118. for (int i = 0; i<N; ++i)
  119. if (isConstrained[i])
  120. {
  121. known[indk] = i;
  122. indk++;
  123. }
  124. else
  125. {
  126. unknown[indu] = i;
  127. indu++;
  128. }
  129. Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar>> Quu, Quk;
  130. igl::slice(Q,unknown, unknown, Quu);
  131. igl::slice(Q,unknown, known, Quk);
  132. std::vector<typename Eigen::Triplet<std::complex<typename DerivedV::Scalar> > > tripletList;
  133. Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > fu(N-nc,1);
  134. igl::slice(f,unknown, Eigen::VectorXi::Zero(1,1), fu);
  135. Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > rhs = (Quk*xknown).sparseView()+.5*fu;
  136. Eigen::SparseLU< Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar>>> solver;
  137. solver.compute(-Quu);
  138. if(solver.info()!=Eigen::Success)
  139. {
  140. std::cerr<<"Decomposition failed!"<<std::endl;
  141. return;
  142. }
  143. Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar>> b = solver.solve(rhs);
  144. if(solver.info()!=Eigen::Success)
  145. {
  146. std::cerr<<"Solving failed!"<<std::endl;
  147. return;
  148. }
  149. indk = 0, indu = 0;
  150. x.setZero(N,1);
  151. for (int i = 0; i<N; ++i)
  152. if (isConstrained[i])
  153. x[i] = xknown[indk++];
  154. else
  155. x[i] = b.coeff(indu++,0);
  156. }
  157. template<typename DerivedV, typename DerivedF>
  158. IGL_INLINE bool igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::
  159. solve(const Eigen::VectorXi &isConstrained,
  160. const Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, Eigen::Dynamic> &cfW,
  161. const Eigen::VectorXi &rootsIndex,
  162. Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, Eigen::Dynamic> &output)
  163. {
  164. // polynomial is of the form:
  165. // z^(2n) +
  166. // -c[0]z^(2n-1) +
  167. // c[1]z^(2n-2) +
  168. // -c[2]z^(2n-3) +
  169. // ... +
  170. // (-1)^n c[n-1]
  171. std::vector<Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1>> coeffs(n,Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1>::Zero(numF, 1));
  172. for (int i =0; i<n; ++i)
  173. {
  174. int degree = i+1;
  175. Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1> Ck;
  176. getGeneralCoeffConstraints(isConstrained,
  177. cfW,
  178. i,
  179. rootsIndex,
  180. Ck);
  181. Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > DD;
  182. computeCoefficientLaplacian(degree, DD);
  183. Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > f; f.resize(numF,1);
  184. minQuadWithKnownMini(DD, f, isConstrained, Ck, coeffs[i]);
  185. }
  186. std::vector<Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 2> > pv;
  187. setFieldFromGeneralCoefficients(coeffs, pv);
  188. output.setZero(numF,3*n);
  189. for (int fi=0; fi<numF; ++fi)
  190. {
  191. const Eigen::Matrix<typename DerivedV::Scalar, 1, 3> &b1 = B1.row(fi);
  192. const Eigen::Matrix<typename DerivedV::Scalar, 1, 3> &b2 = B2.row(fi);
  193. for (int i=0; i<n; ++i)
  194. output.block(fi,3*i, 1, 3) = pv[i](fi,0)*b1 + pv[i](fi,1)*b2;
  195. }
  196. return true;
  197. }
  198. template<typename DerivedV, typename DerivedF>
  199. IGL_INLINE void igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::setFieldFromGeneralCoefficients(const std::vector<Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1>> &coeffs,
  200. std::vector<Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 2>> &pv)
  201. {
  202. pv.assign(n, Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 2>::Zero(numF, 2));
  203. for (int i = 0; i <numF; ++i)
  204. {
  205. // poly coefficients: 1, 0, -Acoeff, 0, Bcoeff
  206. // matlab code from roots (given there are no trailing zeros in the polynomial coefficients)
  207. Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1> polyCoeff;
  208. polyCoeff.setZero(n+1,1);
  209. polyCoeff[0] = 1.;
  210. int sign = 1;
  211. for (int k =0; k<n; ++k)
  212. {
  213. sign = -sign;
  214. int degree = k+1;
  215. polyCoeff[degree] = (1.*sign)*coeffs[k](i);
  216. }
  217. Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1> roots;
  218. igl::polyRoots<std::complex<typename DerivedV::Scalar>, typename DerivedV::Scalar >(polyCoeff,roots);
  219. for (int k=0; k<n; ++k)
  220. {
  221. pv[k](i,0) = real(roots[k]);
  222. pv[k](i,1) = imag(roots[k]);
  223. }
  224. }
  225. }
  226. template<typename DerivedV, typename DerivedF>
  227. IGL_INLINE void igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::computeCoefficientLaplacian(int n, Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &D)
  228. {
  229. std::vector<Eigen::Triplet<std::complex<typename DerivedV::Scalar> >> tripletList;
  230. // For every non-border edge
  231. for (unsigned eid=0; eid<numE; ++eid)
  232. {
  233. if (!isBorderEdge[eid])
  234. {
  235. int fid0 = E2F(eid,0);
  236. int fid1 = E2F(eid,1);
  237. tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid0,
  238. fid0,
  239. std::complex<typename DerivedV::Scalar>(1.)));
  240. tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid1,
  241. fid1,
  242. std::complex<typename DerivedV::Scalar>(1.)));
  243. tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid0,
  244. fid1,
  245. -1.*std::polar(1.,-1.*n*K[eid])));
  246. tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid1,
  247. fid0,
  248. -1.*std::polar(1.,1.*n*K[eid])));
  249. }
  250. }
  251. D.resize(numF,numF);
  252. D.setFromTriplets(tripletList.begin(), tripletList.end());
  253. }
  254. //this gives the coefficients without the (-1)^k that multiplies them
  255. template<typename DerivedV, typename DerivedF>
  256. IGL_INLINE void igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::getGeneralCoeffConstraints(const Eigen::VectorXi &isConstrained,
  257. const Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, Eigen::Dynamic> &cfW,
  258. int k,
  259. const Eigen::VectorXi &rootsIndex,
  260. Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1> &Ck)
  261. {
  262. int numConstrained = isConstrained.sum();
  263. Ck.resize(numConstrained,1);
  264. // int n = rootsIndex.cols();
  265. std::vector<std::vector<int>> allCombs;
  266. igl::nchoosek(0,k+1,n,allCombs);
  267. int ind = 0;
  268. for (int fi = 0; fi <numF; ++fi)
  269. {
  270. const Eigen::Matrix<typename DerivedV::Scalar, 1, 3> &b1 = B1.row(fi);
  271. const Eigen::Matrix<typename DerivedV::Scalar, 1, 3> &b2 = B2.row(fi);
  272. if(isConstrained[fi])
  273. {
  274. std::complex<typename DerivedV::Scalar> ck(0);
  275. for (int j = 0; j < allCombs.size(); ++j)
  276. {
  277. std::complex<typename DerivedV::Scalar> tk(1.);
  278. //collect products
  279. for (int i = 0; i < allCombs[j].size(); ++i)
  280. {
  281. int index = allCombs[j][i];
  282. int ri = rootsIndex[index];
  283. Eigen::Matrix<typename DerivedV::Scalar, 1, 3> w;
  284. if (ri>0)
  285. w = cfW.block(fi,3*(ri-1),1,3);
  286. else
  287. w = -cfW.block(fi,3*(-ri-1),1,3);
  288. typename DerivedV::Scalar w0 = w.dot(b1);
  289. typename DerivedV::Scalar w1 = w.dot(b2);
  290. std::complex<typename DerivedV::Scalar> u(w0,w1);
  291. tk*= u;
  292. }
  293. //collect sum
  294. ck += tk;
  295. }
  296. Ck(ind) = ck;
  297. ind ++;
  298. }
  299. }
  300. }
  301. template<typename DerivedV, typename DerivedF>
  302. IGL_INLINE void igl::GeneralPolyVectorFieldFinder<DerivedV, DerivedF>::computek()
  303. {
  304. K.setZero(numE);
  305. // For every non-border edge
  306. for (unsigned eid=0; eid<numE; ++eid)
  307. {
  308. if (!isBorderEdge[eid])
  309. {
  310. int fid0 = E2F(eid,0);
  311. int fid1 = E2F(eid,1);
  312. Eigen::Matrix<typename DerivedV::Scalar, 1, 3> N0 = FN.row(fid0);
  313. Eigen::Matrix<typename DerivedV::Scalar, 1, 3> N1 = FN.row(fid1);
  314. // find common edge on triangle 0 and 1
  315. int fid0_vc = -1;
  316. int fid1_vc = -1;
  317. for (unsigned i=0;i<3;++i)
  318. {
  319. if (F2E(fid0,i) == eid)
  320. fid0_vc = i;
  321. if (F2E(fid1,i) == eid)
  322. fid1_vc = i;
  323. }
  324. assert(fid0_vc != -1);
  325. assert(fid1_vc != -1);
  326. Eigen::Matrix<typename DerivedV::Scalar, 1, 3> common_edge = V.row(F(fid0,(fid0_vc+1)%3)) - V.row(F(fid0,fid0_vc));
  327. common_edge.normalize();
  328. // Map the two triangles in a new space where the common edge is the x axis and the N0 the z axis
  329. Eigen::Matrix<typename DerivedV::Scalar, 3, 3> P;
  330. Eigen::Matrix<typename DerivedV::Scalar, 1, 3> o = V.row(F(fid0,fid0_vc));
  331. Eigen::Matrix<typename DerivedV::Scalar, 1, 3> tmp = -N0.cross(common_edge);
  332. P << common_edge, tmp, N0;
  333. // P.transposeInPlace();
  334. Eigen::Matrix<typename DerivedV::Scalar, 3, 3> V0;
  335. V0.row(0) = V.row(F(fid0,0)) -o;
  336. V0.row(1) = V.row(F(fid0,1)) -o;
  337. V0.row(2) = V.row(F(fid0,2)) -o;
  338. V0 = (P*V0.transpose()).transpose();
  339. // assert(V0(0,2) < 1e-10);
  340. // assert(V0(1,2) < 1e-10);
  341. // assert(V0(2,2) < 1e-10);
  342. Eigen::Matrix<typename DerivedV::Scalar, 3, 3> V1;
  343. V1.row(0) = V.row(F(fid1,0)) -o;
  344. V1.row(1) = V.row(F(fid1,1)) -o;
  345. V1.row(2) = V.row(F(fid1,2)) -o;
  346. V1 = (P*V1.transpose()).transpose();
  347. // assert(V1(fid1_vc,2) < 10e-10);
  348. // assert(V1((fid1_vc+1)%3,2) < 10e-10);
  349. // compute rotation R such that R * N1 = N0
  350. // i.e. map both triangles to the same plane
  351. double alpha = -atan2(V1((fid1_vc+2)%3,2),V1((fid1_vc+2)%3,1));
  352. Eigen::Matrix<typename DerivedV::Scalar, 3, 3> R;
  353. R << 1, 0, 0,
  354. 0, cos(alpha), -sin(alpha) ,
  355. 0, sin(alpha), cos(alpha);
  356. V1 = (R*V1.transpose()).transpose();
  357. // assert(V1(0,2) < 1e-10);
  358. // assert(V1(1,2) < 1e-10);
  359. // assert(V1(2,2) < 1e-10);
  360. // measure the angle between the reference frames
  361. // k_ij is the angle between the triangle on the left and the one on the right
  362. Eigen::Matrix<typename DerivedV::Scalar, 1, 3> ref0 = V0.row(1) - V0.row(0);
  363. Eigen::Matrix<typename DerivedV::Scalar, 1, 3> ref1 = V1.row(1) - V1.row(0);
  364. ref0.normalize();
  365. ref1.normalize();
  366. double ktemp = atan2(ref1(1),ref1(0)) - atan2(ref0(1),ref0(0));
  367. // just to be sure, rotate ref0 using angle ktemp...
  368. Eigen::Matrix<typename DerivedV::Scalar, 2, 2> R2;
  369. R2 << cos(ktemp), -sin(ktemp), sin(ktemp), cos(ktemp);
  370. Eigen::Matrix<typename DerivedV::Scalar, 1, 2> tmp1 = R2*(ref0.head(2)).transpose();
  371. // assert(tmp1(0) - ref1(0) < 1e-10);
  372. // assert(tmp1(1) - ref1(1) < 1e-10);
  373. K[eid] = ktemp;
  374. }
  375. }
  376. }
  377. IGL_INLINE void igl::n_polyvector_general(const Eigen::MatrixXd &V,
  378. const Eigen::MatrixXi &F,
  379. const Eigen::VectorXi& b,
  380. const Eigen::MatrixXd& bc,
  381. const Eigen::VectorXi &I,
  382. Eigen::MatrixXd &output)
  383. {
  384. Eigen::VectorXi isConstrained = Eigen::VectorXi::Constant(F.rows(),0);
  385. Eigen::MatrixXd cfW = Eigen::MatrixXd::Constant(F.rows(),bc.cols(),0);
  386. for(unsigned i=0; i<b.size();++i)
  387. {
  388. isConstrained(b(i)) = 1;
  389. cfW.row(b(i)) << bc.row(i);
  390. }
  391. int n = I.rows();
  392. igl::GeneralPolyVectorFieldFinder<Eigen::MatrixXd, Eigen::MatrixXi> pvff(V,F,n);
  393. pvff.solve(isConstrained, cfW, I, output);
  394. }
  395. #ifdef IGL_STATIC_LIBRARY
  396. // Explicit template specialization
  397. #endif