intrinsic_delaunay_triangulation.cpp 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252
  1. // This file is part of libigl, a simple c++ geometry processing library.
  2. //
  3. // Copyright (C) 2018 Alec Jacobson <alecjacobson@gmail.com>
  4. //
  5. // This Source Code Form is subject to the terms of the Mozilla Public License
  6. // v. 2.0. If a copy of the MPL was not distributed with this file, You can
  7. // obtain one at http://mozilla.org/MPL/2.0/.
  8. #include "intrinsic_delaunay_triangulation.h"
  9. #include "is_intrinsic_delaunay.h"
  10. #include "tan_half_angle.h"
  11. #include "unique_edge_map.h"
  12. #include "flip_edge.h"
  13. #include "EPS.h"
  14. #include "matlab_format.h"
  15. #include <iostream>
  16. #include <queue>
  17. #include <map>
  18. template <
  19. typename Derivedl_in,
  20. typename DerivedF_in,
  21. typename Derivedl,
  22. typename DerivedF>
  23. IGL_INLINE void igl::intrinsic_delaunay_triangulation(
  24. const Eigen::MatrixBase<Derivedl_in> & l_in,
  25. const Eigen::MatrixBase<DerivedF_in> & F_in,
  26. Eigen::PlainObjectBase<Derivedl> & l,
  27. Eigen::PlainObjectBase<DerivedF> & F)
  28. {
  29. // We're going to work in place
  30. l = l_in;
  31. F = F_in;
  32. typedef Eigen::Matrix<typename DerivedF::Scalar,Eigen::Dynamic,2> MatrixX2I;
  33. typedef Eigen::Matrix<typename DerivedF::Scalar,Eigen::Dynamic,1> VectorXI;
  34. MatrixX2I E,uE;
  35. VectorXI EMAP;
  36. std::vector<std::vector<typename DerivedF::Scalar> > uE2E;
  37. igl::unique_edge_map(F, E, uE, EMAP, uE2E);
  38. typedef typename DerivedF::Scalar Index;
  39. typedef typename Derivedl::Scalar Scalar;
  40. const Index num_faces = F.rows();
  41. // Does edge (a,b) exist in the edges of all faces incident on
  42. // existing unique edge uei.
  43. //
  44. // Inputs:
  45. // a 1st end-point of query edge
  46. // b 2nd end-point of query edge
  47. // uei index into uE/uE2E of unique edge
  48. // uE2E map from unique edges to half-edges (see unique_edge_map)
  49. // E #F*3 by 2 list of half-edges
  50. //
  51. std::vector<Index> face_queue;
  52. face_queue.reserve(32);
  53. std::vector<Index> pushed;
  54. // 32 is faster than 8
  55. pushed.reserve(32);
  56. const auto edge_exists_near =
  57. [&](const Index & a,const Index & b,const Index & uei)->bool
  58. {
  59. face_queue.clear();
  60. pushed.clear();
  61. assert(a!=b);
  62. // Not handling case where (a,b) is edge of face incident on uei
  63. // since this can't happen for edge-flipping.
  64. assert(a!=uE(uei,0));
  65. assert(a!=uE(uei,1));
  66. assert(b!=uE(uei,0));
  67. assert(b!=uE(uei,1));
  68. // starting with the (2) faces incident on e, consider all faces
  69. // incident on edges containing either a or b.
  70. //
  71. // face_queue Queue containing faces incident on exactly one of a/b
  72. // Using a vector seems mildly faster
  73. const Index f1 = uE2E[uei][0]%num_faces;
  74. const Index f2 = uE2E[uei][1]%num_faces;
  75. // map is faster than unordered_map here, and vector + brute force
  76. // is_member check is even faster
  77. face_queue.push_back(f1);
  78. pushed.push_back(f1);
  79. face_queue.push_back(f2);
  80. pushed.push_back(f2);
  81. while(!face_queue.empty())
  82. {
  83. const Index f = face_queue.back();
  84. face_queue.pop_back();
  85. // consider each edge of this face
  86. for(int c = 0;c<3;c++)
  87. {
  88. // Unique edge id
  89. const Index uec = EMAP(c*num_faces+f);
  90. const Index s = uE(uec,0);
  91. const Index d = uE(uec,1);
  92. const bool ona = s == a || d == a;
  93. const bool onb = s == b || d == b;
  94. // Is this the edge we're looking for?
  95. if(ona && onb)
  96. {
  97. return true;
  98. }
  99. // not incident on either?
  100. if(!ona && !onb)
  101. {
  102. continue;
  103. }
  104. // loop over all incident half-edges
  105. for(const auto & he : uE2E[uec])
  106. {
  107. // face of this he
  108. const Index fhe = he%num_faces;
  109. bool already_pushed = false;
  110. for(const auto & fp : pushed)
  111. {
  112. if(fp == fhe)
  113. {
  114. already_pushed = true;
  115. break;
  116. }
  117. }
  118. if(!already_pushed)
  119. {
  120. pushed.push_back(fhe);
  121. face_queue.push_back(fhe);
  122. }
  123. }
  124. }
  125. }
  126. return false;
  127. };
  128. // Vector is faster than queue...
  129. std::vector<Index> Q;
  130. Q.reserve(uE2E.size());
  131. for (size_t uei=0; uei<uE2E.size(); uei++)
  132. {
  133. Q.push_back(uei);
  134. }
  135. while(!Q.empty())
  136. {
  137. const Index uei = Q.back();
  138. Q.pop_back();
  139. if (uE2E[uei].size() == 2)
  140. {
  141. if(!is_intrinsic_delaunay(l,F,uE2E,uei))
  142. {
  143. // update l just before flipping edge
  144. // . //
  145. // /|\ //
  146. // a/ | \d //
  147. // / e \ //
  148. // / | \ //
  149. // .----|-f--. //
  150. // \ | / //
  151. // \ | / //
  152. // b\α|δ/c //
  153. // \|/ //
  154. // . //
  155. // Annotated from flip_edge:
  156. // Edge to flip [v1,v2] --> [v3,v4]
  157. // Before:
  158. // F(f1,:) = [v1,v2,v4] // in some cyclic order
  159. // F(f2,:) = [v1,v3,v2] // in some cyclic order
  160. // After:
  161. // F(f1,:) = [v1,v3,v4] // in *this* order
  162. // F(f2,:) = [v2,v4,v3] // in *this* order
  163. //
  164. // v1 v1
  165. // /|\ / \
  166. // c/ | \b c/f1 \b
  167. // v3 /f2|f1\ v4 => v3 /__f__\ v4
  168. // \ e / \ f2 /
  169. // d\ | /a d\ /a
  170. // \|/ \ /
  171. // v2 v2
  172. //
  173. // Compute intrinsic length of oppposite edge
  174. assert(uE2E[uei].size() == 2 && "edge should have 2 incident faces");
  175. const Index f1 = uE2E[uei][0]%num_faces;
  176. const Index f2 = uE2E[uei][1]%num_faces;
  177. const Index c1 = uE2E[uei][0]/num_faces;
  178. const Index c2 = uE2E[uei][1]/num_faces;
  179. assert(c1 < 3);
  180. assert(c2 < 3);
  181. assert(f1 != f2);
  182. const Index v1 = F(f1, (c1+1)%3);
  183. const Index v2 = F(f1, (c1+2)%3);
  184. const Index v4 = F(f1, c1);
  185. const Index v3 = F(f2, c2);
  186. assert(F(f2, (c2+2)%3) == v1);
  187. assert(F(f2, (c2+1)%3) == v2);
  188. // From gptoolbox/mesh/flip_edge.m
  189. // "If edge-after-flip already exists then this will create a non-manifold
  190. // edge"
  191. // Yes, this can happen: e.g., an edge of a tetrahedron."
  192. // "If two edges will be the same edge after flip then this will create a
  193. // non-manifold edge."
  194. // I dont' think this can happen if we flip one at a time. gptoolbox
  195. // flips in parallel.
  196. // Over 50% of the time is spent doing this check...
  197. bool flippable = !edge_exists_near(v3,v4,uei);
  198. if(flippable)
  199. {
  200. assert( std::abs(l(f1,c1)-l(f2,c2)) < igl::EPS<Scalar>() );
  201. const Scalar e = l(f1,c1);
  202. const Scalar a = l(f1,(c1+1)%3);
  203. const Scalar b = l(f1,(c1+2)%3);
  204. const Scalar c = l(f2,(c2+1)%3);
  205. const Scalar d = l(f2,(c2+2)%3);
  206. // tan(α/2)
  207. const Scalar tan_a_2= tan_half_angle(a,b,e);
  208. // tan(δ/2)
  209. const Scalar tan_d_2 = tan_half_angle(d,e,c);
  210. // tan((α+δ)/2)
  211. const Scalar tan_a_d_2 = (tan_a_2 + tan_d_2)/(1.0-tan_a_2*tan_d_2);
  212. // cos(α+δ)
  213. const Scalar cos_a_d =
  214. (1.0 - tan_a_d_2*tan_a_d_2)/(1.0+tan_a_d_2*tan_a_d_2);
  215. const Scalar f = sqrt(b*b + c*c - 2.0*b*c*cos_a_d);
  216. l(f1,0) = f;
  217. l(f1,1) = b;
  218. l(f1,2) = c;
  219. l(f2,0) = f;
  220. l(f2,1) = d;
  221. l(f2,2) = a;
  222. flip_edge(F, E, uE, EMAP, uE2E, uei);
  223. // append neighbors to back
  224. const size_t e_24 = f1 + ((c1 + 1) % 3) * num_faces;
  225. const size_t e_41 = f1 + ((c1 + 2) % 3) * num_faces;
  226. const size_t e_13 = f2 + ((c2 + 1) % 3) * num_faces;
  227. const size_t e_32 = f2 + ((c2 + 2) % 3) * num_faces;
  228. const size_t ue_24 = EMAP(e_24);
  229. const size_t ue_41 = EMAP(e_41);
  230. const size_t ue_13 = EMAP(e_13);
  231. const size_t ue_32 = EMAP(e_32);
  232. Q.push_back(ue_24);
  233. Q.push_back(ue_41);
  234. Q.push_back(ue_13);
  235. Q.push_back(ue_32);
  236. }
  237. }
  238. }
  239. }
  240. }
  241. #ifdef IGL_STATIC_LIBRARY
  242. // Explicit template instantiation
  243. // generated by autoexplicit.sh
  244. template void igl::intrinsic_delaunay_triangulation<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
  245. #endif