123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2016 Michael Rabinovich
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "flip_avoiding_line_search.h"
- #include <Eigen/Dense>
- #include <vector>
- #include "line_search.h"
- #define TwoPi 2*M_PI//6.28318530717958648
- using namespace std;
- //---------------------------------------------------------------------------
- // x - array of size 3
- // In case 3 real roots: => x[0], x[1], x[2], return 3
- // 2 real roots: x[0], x[1], return 2
- // 1 real root : x[0], x[1] ± i*x[2], return 1
- // http://math.ivanovo.ac.ru/dalgebra/Khashin/poly/index.html
- int SolveP3(std::vector<double>& x,double a,double b,double c) { // solve cubic equation x^3 + a*x^2 + b*x + c
- double a2 = a*a;
- double q = (a2 - 3*b)/9;
- double r = (a*(2*a2-9*b) + 27*c)/54;
- double r2 = r*r;
- double q3 = q*q*q;
- double A,B;
- if(r2<q3) {
- double t=r/sqrt(q3);
- if( t<-1) t=-1;
- if( t> 1) t= 1;
- t=acos(t);
- a/=3; q=-2*sqrt(q);
- x[0]=q*cos(t/3)-a;
- x[1]=q*cos((t+TwoPi)/3)-a;
- x[2]=q*cos((t-TwoPi)/3)-a;
- return(3);
- } else {
- A =-pow(fabs(r)+sqrt(r2-q3),1./3);
- if( r<0 ) A=-A;
- B = A==0? 0 : B=q/A;
- a/=3;
- x[0] =(A+B)-a;
- x[1] =-0.5*(A+B)-a;
- x[2] = 0.5*sqrt(3.)*(A-B);
- if(fabs(x[2])<1e-14) { x[2]=x[1]; return(2); }
- return(1);
- }
- }
- double get_smallest_pos_quad_zero(double a,double b, double c) {
- double t1,t2;
- if (a != 0) {
- double delta_in = pow(b,2) - 4*a*c;
- if (delta_in < 0) {
- return INFINITY;
- }
- double delta = sqrt(delta_in);
- t1 = (-b + delta)/ (2*a);
- t2 = (-b - delta)/ (2*a);
- } else {
- t1 = t2 = -b/c;
- }
- assert (std::isfinite(t1));
- assert (std::isfinite(t2));
- double tmp_n = min(t1,t2);
- t1 = max(t1,t2); t2 = tmp_n;
- if (t1 == t2) {
- return INFINITY; // means the orientation flips twice = doesn't flip
- }
- // return the smallest negative root if it exists, otherwise return infinity
- if (t1 > 0) {
- if (t2 > 0) {
- return t2;
- } else {
- return t1;
- }
- } else {
- return INFINITY;
- }
- }
- double get_min_pos_root_2D(const Eigen::MatrixXd& uv,const Eigen::MatrixXi& F,
- Eigen::MatrixXd& d, int f) {
- /*
- Finding the smallest timestep t s.t a triangle get degenerated (<=> det = 0)
- The following code can be derived by a symbolic expression in matlab:
- Symbolic matlab:
- U11 = sym('U11');
- U12 = sym('U12');
- U21 = sym('U21');
- U22 = sym('U22');
- U31 = sym('U31');
- U32 = sym('U32');
- V11 = sym('V11');
- V12 = sym('V12');
- V21 = sym('V21');
- V22 = sym('V22');
- V31 = sym('V31');
- V32 = sym('V32');
- t = sym('t');
- U1 = [U11,U12];
- U2 = [U21,U22];
- U3 = [U31,U32];
- V1 = [V11,V12];
- V2 = [V21,V22];
- V3 = [V31,V32];
- A = [(U2+V2*t) - (U1+ V1*t)];
- B = [(U3+V3*t) - (U1+ V1*t)];
- C = [A;B];
- solve(det(C), t);
- cf = coeffs(det(C),t); % Now cf(1),cf(2),cf(3) holds the coefficients for the polynom. at order c,b,a
- */
- int v1 = F(f,0); int v2 = F(f,1); int v3 = F(f,2);
- // get quadratic coefficients (ax^2 + b^x + c)
- #define U11 uv(v1,0)
- #define U12 uv(v1,1)
- #define U21 uv(v2,0)
- #define U22 uv(v2,1)
- #define U31 uv(v3,0)
- #define U32 uv(v3,1)
- #define V11 d(v1,0)
- #define V12 d(v1,1)
- #define V21 d(v2,0)
- #define V22 d(v2,1)
- #define V31 d(v3,0)
- #define V32 d(v3,1)
- double a = V11*V22 - V12*V21 - V11*V32 + V12*V31 + V21*V32 - V22*V31;
- double b = U11*V22 - U12*V21 - U21*V12 + U22*V11 - U11*V32 + U12*V31 + U31*V12 - U32*V11 + U21*V32 - U22*V31 - U31*V22 + U32*V21;
- double c = U11*U22 - U12*U21 - U11*U32 + U12*U31 + U21*U32 - U22*U31;
- return get_smallest_pos_quad_zero(a,b,c);
- }
- double get_min_pos_root_3D(const Eigen::MatrixXd& uv,const Eigen::MatrixXi& F,
- Eigen::MatrixXd& direc, int f) {
- /*
- Searching for the roots of:
- +-1/6 * |ax ay az 1|
- |bx by bz 1|
- |cx cy cz 1|
- |dx dy dz 1|
- Every point ax,ay,az has a search direction a_dx,a_dy,a_dz, and so we add those to the matrix, and solve the cubic to find the step size t for a 0 volume
- Symbolic matlab:
- syms a_x a_y a_z a_dx a_dy a_dz % tetrahedera point and search direction
- syms b_x b_y b_z b_dx b_dy b_dz
- syms c_x c_y c_z c_dx c_dy c_dz
- syms d_x d_y d_z d_dx d_dy d_dz
- syms t % Timestep var, this is what we're looking for
- a_plus_t = [a_x,a_y,a_z] + t*[a_dx,a_dy,a_dz];
- b_plus_t = [b_x,b_y,b_z] + t*[b_dx,b_dy,b_dz];
- c_plus_t = [c_x,c_y,c_z] + t*[c_dx,c_dy,c_dz];
- d_plus_t = [d_x,d_y,d_z] + t*[d_dx,d_dy,d_dz];
- vol_mat = [a_plus_t,1;b_plus_t,1;c_plus_t,1;d_plus_t,1]
- //cf = coeffs(det(vol_det),t); % Now cf(1),cf(2),cf(3),cf(4) holds the coefficients for the polynom
- [coefficients,terms] = coeffs(det(vol_det),t); % terms = [ t^3, t^2, t, 1], Coefficients hold the coeff we seek
- */
- int v1 = F(f,0); int v2 = F(f,1); int v3 = F(f,2); int v4 = F(f,3);
- #define a_x uv(v1,0)
- #define a_y uv(v1,1)
- #define a_z uv(v1,2)
- #define b_x uv(v2,0)
- #define b_y uv(v2,1)
- #define b_z uv(v2,2)
- #define c_x uv(v3,0)
- #define c_y uv(v3,1)
- #define c_z uv(v3,2)
- #define d_x uv(v4,0)
- #define d_y uv(v4,1)
- #define d_z uv(v4,2)
- #define a_dx direc(v1,0)
- #define a_dy direc(v1,1)
- #define a_dz direc(v1,2)
- #define b_dx direc(v2,0)
- #define b_dy direc(v2,1)
- #define b_dz direc(v2,2)
- #define c_dx direc(v3,0)
- #define c_dy direc(v3,1)
- #define c_dz direc(v3,2)
- #define d_dx direc(v4,0)
- #define d_dy direc(v4,1)
- #define d_dz direc(v4,2)
- // Find solution for: a*t^3 + b*t^2 + c*d +d = 0
- double a = a_dx*b_dy*c_dz - a_dx*b_dz*c_dy - a_dy*b_dx*c_dz + a_dy*b_dz*c_dx + a_dz*b_dx*c_dy - a_dz*b_dy*c_dx - a_dx*b_dy*d_dz + a_dx*b_dz*d_dy + a_dy*b_dx*d_dz - a_dy*b_dz*d_dx - a_dz*b_dx*d_dy + a_dz*b_dy*d_dx + a_dx*c_dy*d_dz - a_dx*c_dz*d_dy - a_dy*c_dx*d_dz + a_dy*c_dz*d_dx + a_dz*c_dx*d_dy - a_dz*c_dy*d_dx - b_dx*c_dy*d_dz + b_dx*c_dz*d_dy + b_dy*c_dx*d_dz - b_dy*c_dz*d_dx - b_dz*c_dx*d_dy + b_dz*c_dy*d_dx;
- double b = a_dy*b_dz*c_x - a_dy*b_x*c_dz - a_dz*b_dy*c_x + a_dz*b_x*c_dy + a_x*b_dy*c_dz - a_x*b_dz*c_dy - a_dx*b_dz*c_y + a_dx*b_y*c_dz + a_dz*b_dx*c_y - a_dz*b_y*c_dx - a_y*b_dx*c_dz + a_y*b_dz*c_dx + a_dx*b_dy*c_z - a_dx*b_z*c_dy - a_dy*b_dx*c_z + a_dy*b_z*c_dx + a_z*b_dx*c_dy - a_z*b_dy*c_dx - a_dy*b_dz*d_x + a_dy*b_x*d_dz + a_dz*b_dy*d_x - a_dz*b_x*d_dy - a_x*b_dy*d_dz + a_x*b_dz*d_dy + a_dx*b_dz*d_y - a_dx*b_y*d_dz - a_dz*b_dx*d_y + a_dz*b_y*d_dx + a_y*b_dx*d_dz - a_y*b_dz*d_dx - a_dx*b_dy*d_z + a_dx*b_z*d_dy + a_dy*b_dx*d_z - a_dy*b_z*d_dx - a_z*b_dx*d_dy + a_z*b_dy*d_dx + a_dy*c_dz*d_x - a_dy*c_x*d_dz - a_dz*c_dy*d_x + a_dz*c_x*d_dy + a_x*c_dy*d_dz - a_x*c_dz*d_dy - a_dx*c_dz*d_y + a_dx*c_y*d_dz + a_dz*c_dx*d_y - a_dz*c_y*d_dx - a_y*c_dx*d_dz + a_y*c_dz*d_dx + a_dx*c_dy*d_z - a_dx*c_z*d_dy - a_dy*c_dx*d_z + a_dy*c_z*d_dx + a_z*c_dx*d_dy - a_z*c_dy*d_dx - b_dy*c_dz*d_x + b_dy*c_x*d_dz + b_dz*c_dy*d_x - b_dz*c_x*d_dy - b_x*c_dy*d_dz + b_x*c_dz*d_dy + b_dx*c_dz*d_y - b_dx*c_y*d_dz - b_dz*c_dx*d_y + b_dz*c_y*d_dx + b_y*c_dx*d_dz - b_y*c_dz*d_dx - b_dx*c_dy*d_z + b_dx*c_z*d_dy + b_dy*c_dx*d_z - b_dy*c_z*d_dx - b_z*c_dx*d_dy + b_z*c_dy*d_dx;
- double c = a_dz*b_x*c_y - a_dz*b_y*c_x - a_x*b_dz*c_y + a_x*b_y*c_dz + a_y*b_dz*c_x - a_y*b_x*c_dz - a_dy*b_x*c_z + a_dy*b_z*c_x + a_x*b_dy*c_z - a_x*b_z*c_dy - a_z*b_dy*c_x + a_z*b_x*c_dy + a_dx*b_y*c_z - a_dx*b_z*c_y - a_y*b_dx*c_z + a_y*b_z*c_dx + a_z*b_dx*c_y - a_z*b_y*c_dx - a_dz*b_x*d_y + a_dz*b_y*d_x + a_x*b_dz*d_y - a_x*b_y*d_dz - a_y*b_dz*d_x + a_y*b_x*d_dz + a_dy*b_x*d_z - a_dy*b_z*d_x - a_x*b_dy*d_z + a_x*b_z*d_dy + a_z*b_dy*d_x - a_z*b_x*d_dy - a_dx*b_y*d_z + a_dx*b_z*d_y + a_y*b_dx*d_z - a_y*b_z*d_dx - a_z*b_dx*d_y + a_z*b_y*d_dx + a_dz*c_x*d_y - a_dz*c_y*d_x - a_x*c_dz*d_y + a_x*c_y*d_dz + a_y*c_dz*d_x - a_y*c_x*d_dz - a_dy*c_x*d_z + a_dy*c_z*d_x + a_x*c_dy*d_z - a_x*c_z*d_dy - a_z*c_dy*d_x + a_z*c_x*d_dy + a_dx*c_y*d_z - a_dx*c_z*d_y - a_y*c_dx*d_z + a_y*c_z*d_dx + a_z*c_dx*d_y - a_z*c_y*d_dx - b_dz*c_x*d_y + b_dz*c_y*d_x + b_x*c_dz*d_y - b_x*c_y*d_dz - b_y*c_dz*d_x + b_y*c_x*d_dz + b_dy*c_x*d_z - b_dy*c_z*d_x - b_x*c_dy*d_z + b_x*c_z*d_dy + b_z*c_dy*d_x - b_z*c_x*d_dy - b_dx*c_y*d_z + b_dx*c_z*d_y + b_y*c_dx*d_z - b_y*c_z*d_dx - b_z*c_dx*d_y + b_z*c_y*d_dx;
- double d = a_x*b_y*c_z - a_x*b_z*c_y - a_y*b_x*c_z + a_y*b_z*c_x + a_z*b_x*c_y - a_z*b_y*c_x - a_x*b_y*d_z + a_x*b_z*d_y + a_y*b_x*d_z - a_y*b_z*d_x - a_z*b_x*d_y + a_z*b_y*d_x + a_x*c_y*d_z - a_x*c_z*d_y - a_y*c_x*d_z + a_y*c_z*d_x + a_z*c_x*d_y - a_z*c_y*d_x - b_x*c_y*d_z + b_x*c_z*d_y + b_y*c_x*d_z - b_y*c_z*d_x - b_z*c_x*d_y + b_z*c_y*d_x;
- if (a==0) {
- return get_smallest_pos_quad_zero(b,c,d);
- }
- b/=a; c/=a; d/=a; // normalize it all
- std::vector<double> res(3);
- int real_roots_num = SolveP3(res,b,c,d);
- switch (real_roots_num) {
- case 1:
- return (res[0] >= 0) ? res[0]:INFINITY;
- case 2: {
- double max_root = max(res[0],res[1]); double min_root = min(res[0],res[1]);
- if (min_root > 0) return min_root;
- if (max_root > 0) return max_root;
- return INFINITY;
- }
- case 3:
- default: {
- std::sort(res.begin(),res.end());
- if (res[0] > 0) return res[0];
- if (res[1] > 0) return res[1];
- if (res[2] > 0) return res[2];
- return INFINITY;
- }
- }
- }
- double compute_max_step_from_singularities(const Eigen::MatrixXd& uv,
- const Eigen::MatrixXi& F,
- Eigen::MatrixXd& d) {
- double max_step = INFINITY;
- // The if statement is outside the for loops to avoid branching/ease parallelizing
- if (uv.cols() == 2) {
- for (int f = 0; f < F.rows(); f++) {
- double min_positive_root = get_min_pos_root_2D(uv,F,d,f);
- max_step = min(max_step, min_positive_root);
- }
- } else { // volumetric deformation
- for (int f = 0; f < F.rows(); f++) {
- double min_positive_root = get_min_pos_root_3D(uv,F,d,f);
- max_step = min(max_step, min_positive_root);
- }
- }
- return max_step;
- }
- IGL_INLINE double igl::flip_avoiding_line_search(
- const Eigen::MatrixXi F,
- Eigen::MatrixXd& cur_v,
- Eigen::MatrixXd& dst_v,
- std::function<double(Eigen::MatrixXd&)> energy,
- double cur_energy)
- {
- Eigen::MatrixXd d = dst_v - cur_v;
- double min_step_to_singularity = compute_max_step_from_singularities(cur_v,F,d);
- double max_step_size = min(1., min_step_to_singularity*0.8);
- return igl::line_search(cur_v,d,max_step_size, energy, cur_energy);
- }
- #ifdef IGL_STATIC_LIBRARY
- #endif
|