123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2016 Michael Rabinovich
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "flip_avoiding_line_search.h"
- #include "line_search.h"
- #include "PI.h"
- #include <Eigen/Dense>
- #include <vector>
- namespace igl
- {
- namespace flip_avoiding
- {
- //---------------------------------------------------------------------------
- // x - array of size 3
- // In case 3 real roots: => x[0], x[1], x[2], return 3
- // 2 real roots: x[0], x[1], return 2
- // 1 real root : x[0], x[1] ± i*x[2], return 1
- // http://math.ivanovo.ac.ru/dalgebra/Khashin/poly/index.html
- IGL_INLINE int SolveP3(std::vector<double>& x,double a,double b,double c)
- { // solve cubic equation x^3 + a*x^2 + b*x + c
- using namespace std;
- double a2 = a*a;
- double q = (a2 - 3*b)/9;
- double r = (a*(2*a2-9*b) + 27*c)/54;
- double r2 = r*r;
- double q3 = q*q*q;
- double A,B;
- if(r2<q3)
- {
- double t=r/sqrt(q3);
- if( t<-1) t=-1;
- if( t> 1) t= 1;
- t=acos(t);
- a/=3; q=-2*sqrt(q);
- x[0]=q*cos(t/3)-a;
- x[1]=q*cos((t+(2*igl::PI))/3)-a;
- x[2]=q*cos((t-(2*igl::PI))/3)-a;
- return(3);
- }
- else
- {
- A =-pow(fabs(r)+sqrt(r2-q3),1./3);
- if( r<0 ) A=-A;
- B = A==0? 0 : q/A;
- a/=3;
- x[0] =(A+B)-a;
- x[1] =-0.5*(A+B)-a;
- x[2] = 0.5*sqrt(3.)*(A-B);
- if(fabs(x[2])<1e-14)
- {
- x[2]=x[1]; return(2);
- }
- return(1);
- }
- }
- IGL_INLINE double get_smallest_pos_quad_zero(double a,double b, double c)
- {
- using namespace std;
- double t1, t2;
- if(std::abs(a) > 1.0e-10)
- {
- double delta_in = pow(b, 2) - 4 * a * c;
- if(delta_in <= 0)
- {
- return INFINITY;
- }
- double delta = sqrt(delta_in); // delta >= 0
- if(b >= 0) // avoid subtracting two similar numbers
- {
- double bd = - b - delta;
- t1 = 2 * c / bd;
- t2 = bd / (2 * a);
- }
- else
- {
- double bd = - b + delta;
- t1 = bd / (2 * a);
- t2 = (2 * c) / bd;
- }
- assert (std::isfinite(t1));
- assert (std::isfinite(t2));
- if(a < 0) std::swap(t1, t2); // make t1 > t2
- // return the smaller positive root if it exists, otherwise return infinity
- if(t1 > 0)
- {
- return t2 > 0 ? t2 : t1;
- }
- else
- {
- return INFINITY;
- }
- }
- else
- {
- if(b == 0) return INFINITY; // just to avoid divide-by-zero
- t1 = -c / b;
- return t1 > 0 ? t1 : INFINITY;
- }
- }
- IGL_INLINE double get_min_pos_root_2D(const Eigen::MatrixXd& uv,
- const Eigen::MatrixXi& F,
- Eigen::MatrixXd& d,
- int f)
- {
- using namespace std;
- /*
- Finding the smallest timestep t s.t a triangle get degenerated (<=> det = 0)
- The following code can be derived by a symbolic expression in matlab:
- Symbolic matlab:
- U11 = sym('U11');
- U12 = sym('U12');
- U21 = sym('U21');
- U22 = sym('U22');
- U31 = sym('U31');
- U32 = sym('U32');
- V11 = sym('V11');
- V12 = sym('V12');
- V21 = sym('V21');
- V22 = sym('V22');
- V31 = sym('V31');
- V32 = sym('V32');
- t = sym('t');
- U1 = [U11,U12];
- U2 = [U21,U22];
- U3 = [U31,U32];
- V1 = [V11,V12];
- V2 = [V21,V22];
- V3 = [V31,V32];
- A = [(U2+V2*t) - (U1+ V1*t)];
- B = [(U3+V3*t) - (U1+ V1*t)];
- C = [A;B];
- solve(det(C), t);
- cf = coeffs(det(C),t); % Now cf(1),cf(2),cf(3) holds the coefficients for the polynom. at order c,b,a
- */
- int v1 = F(f,0); int v2 = F(f,1); int v3 = F(f,2);
- // get quadratic coefficients (ax^2 + b^x + c)
- const double& U11 = uv(v1,0);
- const double& U12 = uv(v1,1);
- const double& U21 = uv(v2,0);
- const double& U22 = uv(v2,1);
- const double& U31 = uv(v3,0);
- const double& U32 = uv(v3,1);
- const double& V11 = d(v1,0);
- const double& V12 = d(v1,1);
- const double& V21 = d(v2,0);
- const double& V22 = d(v2,1);
- const double& V31 = d(v3,0);
- const double& V32 = d(v3,1);
- double a = V11*V22 - V12*V21 - V11*V32 + V12*V31 + V21*V32 - V22*V31;
- double b = U11*V22 - U12*V21 - U21*V12 + U22*V11 - U11*V32 + U12*V31 + U31*V12 - U32*V11 + U21*V32 - U22*V31 - U31*V22 + U32*V21;
- double c = U11*U22 - U12*U21 - U11*U32 + U12*U31 + U21*U32 - U22*U31;
- return get_smallest_pos_quad_zero(a,b,c);
- }
- IGL_INLINE double get_min_pos_root_3D(const Eigen::MatrixXd& uv,
- const Eigen::MatrixXi& F,
- Eigen::MatrixXd& direc,
- int f)
- {
- using namespace std;
- /*
- Searching for the roots of:
- +-1/6 * |ax ay az 1|
- |bx by bz 1|
- |cx cy cz 1|
- |dx dy dz 1|
- Every point ax,ay,az has a search direction a_dx,a_dy,a_dz, and so we add those to the matrix, and solve the cubic to find the step size t for a 0 volume
- Symbolic matlab:
- syms a_x a_y a_z a_dx a_dy a_dz % tetrahedera point and search direction
- syms b_x b_y b_z b_dx b_dy b_dz
- syms c_x c_y c_z c_dx c_dy c_dz
- syms d_x d_y d_z d_dx d_dy d_dz
- syms t % Timestep var, this is what we're looking for
- a_plus_t = [a_x,a_y,a_z] + t*[a_dx,a_dy,a_dz];
- b_plus_t = [b_x,b_y,b_z] + t*[b_dx,b_dy,b_dz];
- c_plus_t = [c_x,c_y,c_z] + t*[c_dx,c_dy,c_dz];
- d_plus_t = [d_x,d_y,d_z] + t*[d_dx,d_dy,d_dz];
- vol_mat = [a_plus_t,1;b_plus_t,1;c_plus_t,1;d_plus_t,1]
- //cf = coeffs(det(vol_det),t); % Now cf(1),cf(2),cf(3),cf(4) holds the coefficients for the polynom
- [coefficients,terms] = coeffs(det(vol_det),t); % terms = [ t^3, t^2, t, 1], Coefficients hold the coeff we seek
- */
- int v1 = F(f,0); int v2 = F(f,1); int v3 = F(f,2); int v4 = F(f,3);
- const double& a_x = uv(v1,0);
- const double& a_y = uv(v1,1);
- const double& a_z = uv(v1,2);
- const double& b_x = uv(v2,0);
- const double& b_y = uv(v2,1);
- const double& b_z = uv(v2,2);
- const double& c_x = uv(v3,0);
- const double& c_y = uv(v3,1);
- const double& c_z = uv(v3,2);
- const double& d_x = uv(v4,0);
- const double& d_y = uv(v4,1);
- const double& d_z = uv(v4,2);
- const double& a_dx = direc(v1,0);
- const double& a_dy = direc(v1,1);
- const double& a_dz = direc(v1,2);
- const double& b_dx = direc(v2,0);
- const double& b_dy = direc(v2,1);
- const double& b_dz = direc(v2,2);
- const double& c_dx = direc(v3,0);
- const double& c_dy = direc(v3,1);
- const double& c_dz = direc(v3,2);
- const double& d_dx = direc(v4,0);
- const double& d_dy = direc(v4,1);
- const double& d_dz = direc(v4,2);
- // Find solution for: a*t^3 + b*t^2 + c*d +d = 0
- double a = a_dx*b_dy*c_dz - a_dx*b_dz*c_dy - a_dy*b_dx*c_dz + a_dy*b_dz*c_dx + a_dz*b_dx*c_dy - a_dz*b_dy*c_dx - a_dx*b_dy*d_dz + a_dx*b_dz*d_dy + a_dy*b_dx*d_dz - a_dy*b_dz*d_dx - a_dz*b_dx*d_dy + a_dz*b_dy*d_dx + a_dx*c_dy*d_dz - a_dx*c_dz*d_dy - a_dy*c_dx*d_dz + a_dy*c_dz*d_dx + a_dz*c_dx*d_dy - a_dz*c_dy*d_dx - b_dx*c_dy*d_dz + b_dx*c_dz*d_dy + b_dy*c_dx*d_dz - b_dy*c_dz*d_dx - b_dz*c_dx*d_dy + b_dz*c_dy*d_dx;
- double b = a_dy*b_dz*c_x - a_dy*b_x*c_dz - a_dz*b_dy*c_x + a_dz*b_x*c_dy + a_x*b_dy*c_dz - a_x*b_dz*c_dy - a_dx*b_dz*c_y + a_dx*b_y*c_dz + a_dz*b_dx*c_y - a_dz*b_y*c_dx - a_y*b_dx*c_dz + a_y*b_dz*c_dx + a_dx*b_dy*c_z - a_dx*b_z*c_dy - a_dy*b_dx*c_z + a_dy*b_z*c_dx + a_z*b_dx*c_dy - a_z*b_dy*c_dx - a_dy*b_dz*d_x + a_dy*b_x*d_dz + a_dz*b_dy*d_x - a_dz*b_x*d_dy - a_x*b_dy*d_dz + a_x*b_dz*d_dy + a_dx*b_dz*d_y - a_dx*b_y*d_dz - a_dz*b_dx*d_y + a_dz*b_y*d_dx + a_y*b_dx*d_dz - a_y*b_dz*d_dx - a_dx*b_dy*d_z + a_dx*b_z*d_dy + a_dy*b_dx*d_z - a_dy*b_z*d_dx - a_z*b_dx*d_dy + a_z*b_dy*d_dx + a_dy*c_dz*d_x - a_dy*c_x*d_dz - a_dz*c_dy*d_x + a_dz*c_x*d_dy + a_x*c_dy*d_dz - a_x*c_dz*d_dy - a_dx*c_dz*d_y + a_dx*c_y*d_dz + a_dz*c_dx*d_y - a_dz*c_y*d_dx - a_y*c_dx*d_dz + a_y*c_dz*d_dx + a_dx*c_dy*d_z - a_dx*c_z*d_dy - a_dy*c_dx*d_z + a_dy*c_z*d_dx + a_z*c_dx*d_dy - a_z*c_dy*d_dx - b_dy*c_dz*d_x + b_dy*c_x*d_dz + b_dz*c_dy*d_x - b_dz*c_x*d_dy - b_x*c_dy*d_dz + b_x*c_dz*d_dy + b_dx*c_dz*d_y - b_dx*c_y*d_dz - b_dz*c_dx*d_y + b_dz*c_y*d_dx + b_y*c_dx*d_dz - b_y*c_dz*d_dx - b_dx*c_dy*d_z + b_dx*c_z*d_dy + b_dy*c_dx*d_z - b_dy*c_z*d_dx - b_z*c_dx*d_dy + b_z*c_dy*d_dx;
- double c = a_dz*b_x*c_y - a_dz*b_y*c_x - a_x*b_dz*c_y + a_x*b_y*c_dz + a_y*b_dz*c_x - a_y*b_x*c_dz - a_dy*b_x*c_z + a_dy*b_z*c_x + a_x*b_dy*c_z - a_x*b_z*c_dy - a_z*b_dy*c_x + a_z*b_x*c_dy + a_dx*b_y*c_z - a_dx*b_z*c_y - a_y*b_dx*c_z + a_y*b_z*c_dx + a_z*b_dx*c_y - a_z*b_y*c_dx - a_dz*b_x*d_y + a_dz*b_y*d_x + a_x*b_dz*d_y - a_x*b_y*d_dz - a_y*b_dz*d_x + a_y*b_x*d_dz + a_dy*b_x*d_z - a_dy*b_z*d_x - a_x*b_dy*d_z + a_x*b_z*d_dy + a_z*b_dy*d_x - a_z*b_x*d_dy - a_dx*b_y*d_z + a_dx*b_z*d_y + a_y*b_dx*d_z - a_y*b_z*d_dx - a_z*b_dx*d_y + a_z*b_y*d_dx + a_dz*c_x*d_y - a_dz*c_y*d_x - a_x*c_dz*d_y + a_x*c_y*d_dz + a_y*c_dz*d_x - a_y*c_x*d_dz - a_dy*c_x*d_z + a_dy*c_z*d_x + a_x*c_dy*d_z - a_x*c_z*d_dy - a_z*c_dy*d_x + a_z*c_x*d_dy + a_dx*c_y*d_z - a_dx*c_z*d_y - a_y*c_dx*d_z + a_y*c_z*d_dx + a_z*c_dx*d_y - a_z*c_y*d_dx - b_dz*c_x*d_y + b_dz*c_y*d_x + b_x*c_dz*d_y - b_x*c_y*d_dz - b_y*c_dz*d_x + b_y*c_x*d_dz + b_dy*c_x*d_z - b_dy*c_z*d_x - b_x*c_dy*d_z + b_x*c_z*d_dy + b_z*c_dy*d_x - b_z*c_x*d_dy - b_dx*c_y*d_z + b_dx*c_z*d_y + b_y*c_dx*d_z - b_y*c_z*d_dx - b_z*c_dx*d_y + b_z*c_y*d_dx;
- double d = a_x*b_y*c_z - a_x*b_z*c_y - a_y*b_x*c_z + a_y*b_z*c_x + a_z*b_x*c_y - a_z*b_y*c_x - a_x*b_y*d_z + a_x*b_z*d_y + a_y*b_x*d_z - a_y*b_z*d_x - a_z*b_x*d_y + a_z*b_y*d_x + a_x*c_y*d_z - a_x*c_z*d_y - a_y*c_x*d_z + a_y*c_z*d_x + a_z*c_x*d_y - a_z*c_y*d_x - b_x*c_y*d_z + b_x*c_z*d_y + b_y*c_x*d_z - b_y*c_z*d_x - b_z*c_x*d_y + b_z*c_y*d_x;
- if (std::abs(a)<=1.e-10)
- {
- return get_smallest_pos_quad_zero(b,c,d);
- }
- b/=a; c/=a; d/=a; // normalize it all
- std::vector<double> res(3);
- int real_roots_num = SolveP3(res,b,c,d);
- switch (real_roots_num)
- {
- case 1:
- return (res[0] >= 0) ? res[0]:INFINITY;
- case 2:
- {
- double max_root = std::max(res[0],res[1]); double min_root = std::min(res[0],res[1]);
- if (min_root > 0) return min_root;
- if (max_root > 0) return max_root;
- return INFINITY;
- }
- case 3:
- default:
- {
- std::sort(res.begin(),res.end());
- if (res[0] > 0) return res[0];
- if (res[1] > 0) return res[1];
- if (res[2] > 0) return res[2];
- return INFINITY;
- }
- }
- }
- IGL_INLINE double compute_max_step_from_singularities(const Eigen::MatrixXd& uv,
- const Eigen::MatrixXi& F,
- Eigen::MatrixXd& d)
- {
- using namespace std;
- double max_step = INFINITY;
- // The if statement is outside the for loops to avoid branching/ease parallelizing
- if (uv.cols() == 2)
- {
- for (int f = 0; f < F.rows(); f++)
- {
- double min_positive_root = get_min_pos_root_2D(uv,F,d,f);
- max_step = std::min(max_step, min_positive_root);
- }
- }
- else
- { // volumetric deformation
- for (int f = 0; f < F.rows(); f++)
- {
- double min_positive_root = get_min_pos_root_3D(uv,F,d,f);
- max_step = std::min(max_step, min_positive_root);
- }
- }
- return max_step;
- }
- }
- }
- IGL_INLINE double igl::flip_avoiding_line_search(
- const Eigen::MatrixXi F,
- Eigen::MatrixXd& cur_v,
- Eigen::MatrixXd& dst_v,
- std::function<double(Eigen::MatrixXd&)> energy,
- double cur_energy)
- {
- using namespace std;
- Eigen::MatrixXd d = dst_v - cur_v;
- double min_step_to_singularity = igl::flip_avoiding::compute_max_step_from_singularities(cur_v,F,d);
- double max_step_size = std::min(1., min_step_to_singularity*0.8);
- return igl::line_search(cur_v,d,max_step_size, energy, cur_energy);
- }
- #ifdef IGL_STATIC_LIBRARY
- #endif
|