123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef IGL_HARMONIC_H
- #define IGL_HARMONIC_H
- #include "igl_inline.h"
- #include <Eigen/Core>
- #include <Eigen/Sparse>
- namespace igl
- {
- // Compute k-harmonic weight functions "coordinates".
- //
- //
- // Inputs:
- // V #V by dim vertex positions
- // F #F by simplex-size list of element indices
- // b #b boundary indices into V
- // bc #b by #W list of boundary values
- // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
- // Outputs:
- // W #V by #W list of weights
- //
- template <
- typename DerivedV,
- typename DerivedF,
- typename Derivedb,
- typename Derivedbc,
- typename DerivedW>
- IGL_INLINE bool harmonic(
- const Eigen::MatrixBase<DerivedV> & V,
- const Eigen::MatrixBase<DerivedF> & F,
- const Eigen::MatrixBase<Derivedb> & b,
- const Eigen::MatrixBase<Derivedbc> & bc,
- const int k,
- Eigen::PlainObjectBase<DerivedW> & W);
- // Compute harmonic map using uniform laplacian operator
- //
- // Inputs:
- // F #F by simplex-size list of element indices
- // b #b boundary indices into V
- // bc #b by #W list of boundary values
- // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
- // Outputs:
- // W #V by #W list of weights
- //
- template <
- typename DerivedF,
- typename Derivedb,
- typename Derivedbc,
- typename DerivedW>
- IGL_INLINE bool harmonic(
- const Eigen::MatrixBase<DerivedF> & F,
- const Eigen::MatrixBase<Derivedb> & b,
- const Eigen::MatrixBase<Derivedbc> & bc,
- const int k,
- Eigen::PlainObjectBase<DerivedW> & W);
- // Compute a harmonic map using a given Laplacian and mass matrix
- //
- // Inputs:
- // L #V by #V discrete (integrated) Laplacian
- // M #V by #V mass matrix
- // b #b boundary indices into V
- // bc #b by #W list of boundary values
- // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
- // Outputs:
- // W #V by #V list of weights
- template <
- typename DerivedL,
- typename DerivedM,
- typename Derivedb,
- typename Derivedbc,
- typename DerivedW>
- IGL_INLINE bool harmonic(
- const Eigen::SparseMatrix<DerivedL> & L,
- const Eigen::SparseMatrix<DerivedM> & M,
- const Eigen::MatrixBase<Derivedb> & b,
- const Eigen::MatrixBase<Derivedbc> & bc,
- const int k,
- Eigen::PlainObjectBase<DerivedW> & W);
- // Build the discrete k-harmonic operator (computing integrated quantities).
- // That is, if the k-harmonic PDE is Q x = 0, then this minimizes x' Q x
- //
- // Inputs:
- // L #V by #V discrete (integrated) Laplacian
- // M #V by #V mass matrix
- // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
- // Outputs:
- // Q #V by #V discrete (integrated) k-Laplacian
- template <
- typename DerivedL,
- typename DerivedM,
- typename DerivedQ>
- IGL_INLINE void harmonic(
- const Eigen::SparseMatrix<DerivedL> & L,
- const Eigen::SparseMatrix<DerivedM> & M,
- const int k,
- Eigen::SparseMatrix<DerivedQ> & Q);
- // Inputs:
- // V #V by dim vertex positions
- // F #F by simplex-size list of element indices
- // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
- // Outputs:
- // Q #V by #V discrete (integrated) k-Laplacian
- template <
- typename DerivedV,
- typename DerivedF,
- typename DerivedQ>
- IGL_INLINE void harmonic(
- const Eigen::MatrixBase<DerivedV> & V,
- const Eigen::MatrixBase<DerivedF> & F,
- const int k,
- Eigen::SparseMatrix<DerivedQ> & Q);
- };
- #ifndef IGL_STATIC_LIBRARY
- #include "harmonic.cpp"
- #endif
- #endif
|