123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2015 Alec Jacobson <alecjacobson@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "hausdorff.h"
- #include "point_mesh_squared_distance.h"
- template <
- typename DerivedVA,
- typename DerivedFA,
- typename DerivedVB,
- typename DerivedFB,
- typename Scalar>
- IGL_INLINE void igl::hausdorff(
- const Eigen::PlainObjectBase<DerivedVA> & VA,
- const Eigen::PlainObjectBase<DerivedFA> & FA,
- const Eigen::PlainObjectBase<DerivedVB> & VB,
- const Eigen::PlainObjectBase<DerivedFB> & FB,
- Scalar & d)
- {
- using namespace Eigen;
- assert(VA.cols() == 3 && "VA should contain 3d points");
- assert(FA.cols() == 3 && "FA should contain triangles");
- assert(VB.cols() == 3 && "VB should contain 3d points");
- assert(FB.cols() == 3 && "FB should contain triangles");
- Matrix<Scalar,Dynamic,1> sqr_DBA,sqr_DAB;
- Matrix<typename DerivedVA::Index,Dynamic,1> I;
- Matrix<typename DerivedVA::Scalar,Dynamic,3> C;
- point_mesh_squared_distance(VB,VA,FA,sqr_DBA,I,C);
- point_mesh_squared_distance(VA,VB,FB,sqr_DAB,I,C);
- const Scalar dba = sqr_DBA.maxCoeff();
- const Scalar dab = sqr_DAB.maxCoeff();
- d = sqrt(std::max(dba,dab));
- }
- template <
- typename DerivedV,
- typename Scalar>
- IGL_INLINE void igl::hausdorff(
- const Eigen::MatrixBase<DerivedV>& V,
- const std::function<Scalar(const Scalar &,const Scalar &, const Scalar &)> & dist_to_B,
- Scalar & l,
- Scalar & u)
- {
- // e 3-long vector of opposite edge lengths
- Eigen::Matrix<typename DerivedV::Scalar,1,3> e;
- // Maximum edge length
- Scalar e_max = 0;
- for(int i=0;i<3;i++)
- {
- e(i) = (V.row((i+1)%3)-V.row((i+2)%3)).norm();
- e_max = std::max(e_max,e(i));
- }
- // Semiperimeter
- const Scalar s = (e(0)+e(1)+e(2))*0.5;
- // Area
- const Scalar A = sqrt(s*(s-e(0))*(s-e(1))*(s-e(2)));
- // Circumradius
- const Scalar R = e(0)*e(1)*e(2)/(4.*A);
- // inradius
- const Scalar r = A/s;
- // Initialize lower bound to ∞
- l = std::numeric_limits<Scalar>::infinity();
- // d 3-long vector of distance from each corner to B
- Eigen::Matrix<typename DerivedV::Scalar,1,3> d;
- Scalar u1 = std::numeric_limits<Scalar>::infinity();
- Scalar u2 = 0;
- for(int i=0;i<3;i++)
- {
- d(i) = dist_to_B(V(i,0),V(i,1),V(i,2));
- // Lower bound is simply the max over vertex distances
- l = std::max(d(i),l);
- // u1 is the minimum of corner distances + maximum adjacent edge
- u1 = std::min(u1,d(i) + std::max(e((i+1)%3),e((i+2)%3)));
- // u2 first takes the maximum over corner distances
- u2 = std::max(u2,d(i));
- }
- // u2 is the distance from the circumcenter/midpoint of obtuse edge plus the
- // largest corner distance
- u2 += (s-r>2.*R ? R : 0.5*e_max);
- u = std::min(u1,u2);
- }
- #ifdef IGL_STATIC_LIBRARY
- template void igl::hausdorff<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, double>(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, double&);
- template void igl::hausdorff<Eigen::Matrix<double, -1, -1, 0, -1, -1>, double>(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, std::function<double (double const&, double const&, double const&)> const&, double&, double&);
- #endif
|