scaf.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706
  1. // This file is part of libigl, a simple c++ geometry processing library.
  2. //
  3. // Copyright (C) 2018 Zhongshi Jiang <jiangzs@nyu.edu>
  4. //
  5. // This Source Code Form is subject to the terms of the Mozilla Public License
  6. // v. 2.0. If a copy of the MPL was not distributed with this file, You can
  7. // obtain one at http://mozilla.org/MPL/2.0/.
  8. #include "scaf.h"
  9. #include <Eigen/Dense>
  10. #include <Eigen/IterativeLinearSolvers>
  11. #include <Eigen/Sparse>
  12. #include <Eigen/SparseCholesky>
  13. #include <Eigen/SparseQR>
  14. #include <igl/PI.h>
  15. #include <igl/Timer.h>
  16. #include <igl/boundary_loop.h>
  17. #include <igl/cat.h>
  18. #include <igl/doublearea.h>
  19. #include <igl/flip_avoiding_line_search.h>
  20. #include <igl/flipped_triangles.h>
  21. #include <igl/grad.h>
  22. #include <igl/harmonic.h>
  23. #include <igl/local_basis.h>
  24. #include <igl/map_vertices_to_circle.h>
  25. #include <igl/polar_svd.h>
  26. #include <igl/slice.h>
  27. #include <igl/slice_into.h>
  28. #include <igl/slim.h>
  29. #include <igl/triangle/triangulate.h>
  30. #include "mapping_energy_with_jacobians.h"
  31. #include <iostream>
  32. #include <map>
  33. #include <algorithm>
  34. #include <set>
  35. #include <vector>
  36. namespace igl
  37. {
  38. namespace scaf
  39. {
  40. void update_scaffold(igl::SCAFData &s)
  41. {
  42. s.mv_num = s.m_V.rows();
  43. s.mf_num = s.m_T.rows();
  44. s.v_num = s.w_uv.rows();
  45. s.sf_num = s.s_T.rows();
  46. s.sv_num = s.v_num - s.mv_num;
  47. s.f_num = s.sf_num + s.mf_num;
  48. s.s_M = Eigen::VectorXd::Constant(s.sf_num, s.scaffold_factor);
  49. }
  50. void adjusted_grad(Eigen::MatrixXd &V,
  51. Eigen::MatrixXi &F,
  52. double area_threshold,
  53. Eigen::SparseMatrix<double> &Dx,
  54. Eigen::SparseMatrix<double> &Dy,
  55. Eigen::SparseMatrix<double> &Dz)
  56. {
  57. Eigen::VectorXd M;
  58. igl::doublearea(V, F, M);
  59. std::vector<int> degen;
  60. for (int i = 0; i < M.size(); i++)
  61. if (M(i) < area_threshold)
  62. degen.push_back(i);
  63. Eigen::SparseMatrix<double> G;
  64. igl::grad(V, F, G);
  65. Dx = G.topRows(F.rows());
  66. Dy = G.block(F.rows(), 0, F.rows(), V.rows());
  67. Dz = G.bottomRows(F.rows());
  68. // handcraft uniform gradient for faces area falling below threshold.
  69. double sin60 = std::sin(igl::PI / 3);
  70. double cos60 = std::cos(igl::PI / 3);
  71. double deno = std::sqrt(sin60 * area_threshold);
  72. Eigen::MatrixXd standard_grad(3, 3);
  73. standard_grad << -sin60 / deno, sin60 / deno, 0,
  74. -cos60 / deno, -cos60 / deno, 1 / deno,
  75. 0, 0, 0;
  76. for (auto k : degen)
  77. for (int j = 0; j < 3; j++)
  78. {
  79. Dx.coeffRef(k, F(k, j)) = standard_grad(0, j);
  80. Dy.coeffRef(k, F(k, j)) = standard_grad(1, j);
  81. Dz.coeffRef(k, F(k, j)) = standard_grad(2, j);
  82. }
  83. }
  84. void compute_scaffold_gradient_matrix(SCAFData &s,
  85. Eigen::SparseMatrix<double> &D1,
  86. Eigen::SparseMatrix<double> &D2)
  87. {
  88. using namespace Eigen;
  89. Eigen::SparseMatrix<double> G;
  90. MatrixXi F_s = s.s_T;
  91. int vn = s.v_num;
  92. MatrixXd V = MatrixXd::Zero(vn, 3);
  93. V.leftCols(2) = s.w_uv;
  94. double min_bnd_edge_len = INFINITY;
  95. int acc_bnd = 0;
  96. for (int i = 0; i < s.bnd_sizes.size(); i++)
  97. {
  98. int current_size = s.bnd_sizes[i];
  99. for (int e = acc_bnd; e < acc_bnd + current_size - 1; e++)
  100. {
  101. min_bnd_edge_len = (std::min)(min_bnd_edge_len,
  102. (s.w_uv.row(s.internal_bnd(e)) -
  103. s.w_uv.row(s.internal_bnd(e + 1)))
  104. .squaredNorm());
  105. }
  106. min_bnd_edge_len = (std::min)(min_bnd_edge_len,
  107. (s.w_uv.row(s.internal_bnd(acc_bnd)) -
  108. s.w_uv.row(s.internal_bnd(acc_bnd + current_size - 1)))
  109. .squaredNorm());
  110. acc_bnd += current_size;
  111. }
  112. double area_threshold = min_bnd_edge_len / 4.0;
  113. Eigen::SparseMatrix<double> Dx, Dy, Dz;
  114. adjusted_grad(V, F_s, area_threshold, Dx, Dy, Dz);
  115. MatrixXd F1, F2, F3;
  116. igl::local_basis(V, F_s, F1, F2, F3);
  117. D1 = F1.col(0).asDiagonal() * Dx + F1.col(1).asDiagonal() * Dy +
  118. F1.col(2).asDiagonal() * Dz;
  119. D2 = F2.col(0).asDiagonal() * Dx + F2.col(1).asDiagonal() * Dy +
  120. F2.col(2).asDiagonal() * Dz;
  121. }
  122. void mesh_improve(igl::SCAFData &s)
  123. {
  124. using namespace Eigen;
  125. MatrixXd m_uv = s.w_uv.topRows(s.mv_num);
  126. MatrixXd V_bnd;
  127. V_bnd.resize(s.internal_bnd.size(), 2);
  128. for (int i = 0; i < s.internal_bnd.size(); i++) // redoing step 1.
  129. {
  130. V_bnd.row(i) = m_uv.row(s.internal_bnd(i));
  131. }
  132. if (s.rect_frame_V.size() == 0)
  133. {
  134. Matrix2d ob; // = rect_corners;
  135. {
  136. VectorXd uv_max = m_uv.colwise().maxCoeff();
  137. VectorXd uv_min = m_uv.colwise().minCoeff();
  138. VectorXd uv_mid = (uv_max + uv_min) / 2.;
  139. Eigen::Array2d scaf_range(3, 3);
  140. ob.row(0) = uv_mid.array() + scaf_range * ((uv_min - uv_mid).array());
  141. ob.row(1) = uv_mid.array() + scaf_range * ((uv_max - uv_mid).array());
  142. }
  143. Vector2d rect_len;
  144. rect_len << ob(1, 0) - ob(0, 0), ob(1, 1) - ob(0, 1);
  145. int frame_points = 5;
  146. s.rect_frame_V.resize(4 * frame_points, 2);
  147. for (int i = 0; i < frame_points; i++)
  148. {
  149. // 0,0;0,1
  150. s.rect_frame_V.row(i) << ob(0, 0), ob(0, 1) + i * rect_len(1) / frame_points;
  151. // 0,0;1,1
  152. s.rect_frame_V.row(i + frame_points)
  153. << ob(0, 0) + i * rect_len(0) / frame_points,
  154. ob(1, 1);
  155. // 1,0;1,1
  156. s.rect_frame_V.row(i + 2 * frame_points) << ob(1, 0), ob(1, 1) - i * rect_len(1) / frame_points;
  157. // 1,0;0,1
  158. s.rect_frame_V.row(i + 3 * frame_points)
  159. << ob(1, 0) - i * rect_len(0) / frame_points,
  160. ob(0, 1);
  161. // 0,0;0,1
  162. }
  163. s.frame_ids = Eigen::VectorXi::LinSpaced(s.rect_frame_V.rows(), s.mv_num, s.mv_num + s.rect_frame_V.rows());
  164. }
  165. // Concatenate Vert and Edge
  166. MatrixXd V;
  167. MatrixXi E;
  168. igl::cat(1, V_bnd, s.rect_frame_V, V);
  169. E.resize(V.rows(), 2);
  170. for (int i = 0; i < E.rows(); i++)
  171. E.row(i) << i, i + 1;
  172. int acc_bs = 0;
  173. for (auto bs : s.bnd_sizes)
  174. {
  175. E(acc_bs + bs - 1, 1) = acc_bs;
  176. acc_bs += bs;
  177. }
  178. E(V.rows() - 1, 1) = acc_bs;
  179. assert(acc_bs == s.internal_bnd.size());
  180. MatrixXd H = MatrixXd::Zero(s.component_sizes.size(), 2);
  181. {
  182. int hole_f = 0;
  183. int hole_i = 0;
  184. for (auto cs : s.component_sizes)
  185. {
  186. for (int i = 0; i < 3; i++)
  187. H.row(hole_i) += m_uv.row(s.m_T(hole_f, i)); // redoing step 2
  188. hole_f += cs;
  189. hole_i++;
  190. }
  191. }
  192. H /= 3.;
  193. MatrixXd uv2;
  194. igl::triangle::triangulate(V, E, H, std::basic_string<char>("qYYQ"), uv2, s.s_T);
  195. auto bnd_n = s.internal_bnd.size();
  196. for (auto i = 0; i < s.s_T.rows(); i++)
  197. for (auto j = 0; j < s.s_T.cols(); j++)
  198. {
  199. auto &x = s.s_T(i, j);
  200. if (x < bnd_n)
  201. x = s.internal_bnd(x);
  202. else
  203. x += m_uv.rows() - bnd_n;
  204. }
  205. igl::cat(1, s.m_T, s.s_T, s.w_T);
  206. s.w_uv.conservativeResize(m_uv.rows() - bnd_n + uv2.rows(), 2);
  207. s.w_uv.bottomRows(uv2.rows() - bnd_n) = uv2.bottomRows(-bnd_n + uv2.rows());
  208. update_scaffold(s);
  209. // after_mesh_improve
  210. compute_scaffold_gradient_matrix(s, s.Dx_s, s.Dy_s);
  211. s.Dx_s.makeCompressed();
  212. s.Dy_s.makeCompressed();
  213. s.Dz_s.makeCompressed();
  214. s.Ri_s = MatrixXd::Zero(s.Dx_s.rows(), s.dim * s.dim);
  215. s.Ji_s.resize(s.Dx_s.rows(), s.dim * s.dim);
  216. s.W_s.resize(s.Dx_s.rows(), s.dim * s.dim);
  217. }
  218. void add_new_patch(igl::SCAFData &s, const Eigen::MatrixXd &V_ref,
  219. const Eigen::MatrixXi &F_ref,
  220. const Eigen::RowVectorXd &center,
  221. const Eigen::MatrixXd &uv_init)
  222. {
  223. using namespace std;
  224. using namespace Eigen;
  225. assert(uv_init.rows() != 0);
  226. Eigen::VectorXd M;
  227. igl::doublearea(V_ref, F_ref, M);
  228. s.mesh_measure += M.sum() / 2;
  229. Eigen::VectorXi bnd;
  230. Eigen::MatrixXd bnd_uv;
  231. std::vector<std::vector<int>> all_bnds;
  232. igl::boundary_loop(F_ref, all_bnds);
  233. int num_holes = all_bnds.size() - 1;
  234. s.component_sizes.push_back(F_ref.rows());
  235. MatrixXd m_uv = s.w_uv.topRows(s.mv_num);
  236. igl::cat(1, m_uv, uv_init, s.w_uv);
  237. s.m_M.conservativeResize(s.mf_num + M.size());
  238. s.m_M.bottomRows(M.size()) = M / 2;
  239. for (auto cur_bnd : all_bnds)
  240. {
  241. s.internal_bnd.conservativeResize(s.internal_bnd.size() + cur_bnd.size());
  242. s.internal_bnd.bottomRows(cur_bnd.size()) = Map<ArrayXi>(cur_bnd.data(), cur_bnd.size()) + s.mv_num;
  243. s.bnd_sizes.push_back(cur_bnd.size());
  244. }
  245. s.m_T.conservativeResize(s.mf_num + F_ref.rows(), 3);
  246. s.m_T.bottomRows(F_ref.rows()) = F_ref.array() + s.mv_num;
  247. s.mf_num += F_ref.rows();
  248. s.m_V.conservativeResize(s.mv_num + V_ref.rows(), 3);
  249. s.m_V.bottomRows(V_ref.rows()) = V_ref;
  250. s.mv_num += V_ref.rows();
  251. s.rect_frame_V = MatrixXd();
  252. mesh_improve(s);
  253. }
  254. void compute_jacobians(SCAFData &s, const Eigen::MatrixXd &V_new, bool whole)
  255. {
  256. auto comp_J2 = [](const Eigen::MatrixXd &uv,
  257. const Eigen::SparseMatrix<double> &Dx,
  258. const Eigen::SparseMatrix<double> &Dy,
  259. Eigen::MatrixXd &Ji) {
  260. // Ji=[D1*u,D2*u,D1*v,D2*v];
  261. Ji.resize(Dx.rows(), 4);
  262. Ji.col(0) = Dx * uv.col(0);
  263. Ji.col(1) = Dy * uv.col(0);
  264. Ji.col(2) = Dx * uv.col(1);
  265. Ji.col(3) = Dy * uv.col(1);
  266. };
  267. Eigen::MatrixXd m_V_new = V_new.topRows(s.mv_num);
  268. comp_J2(m_V_new, s.Dx_m, s.Dy_m, s.Ji_m);
  269. if (whole)
  270. comp_J2(V_new, s.Dx_s, s.Dy_s, s.Ji_s);
  271. }
  272. double compute_energy_from_jacobians(const Eigen::MatrixXd &Ji,
  273. const Eigen::VectorXd &areas,
  274. igl::MappingEnergyType energy_type)
  275. {
  276. double energy = 0;
  277. if (energy_type == igl::MappingEnergyType::SYMMETRIC_DIRICHLET)
  278. energy = -4; // comply with paper description
  279. return energy + igl::mapping_energy_with_jacobians(Ji, areas, energy_type, 0);
  280. }
  281. double compute_soft_constraint_energy(const SCAFData &s)
  282. {
  283. double e = 0;
  284. for (auto const &x : s.soft_cons)
  285. e += s.soft_const_p * (x.second - s.w_uv.row(x.first)).squaredNorm();
  286. return e;
  287. }
  288. double compute_energy(SCAFData &s, Eigen::MatrixXd &w_uv, bool whole)
  289. {
  290. if (w_uv.rows() != s.v_num)
  291. assert(!whole);
  292. compute_jacobians(s, w_uv, whole);
  293. double energy = compute_energy_from_jacobians(s.Ji_m, s.m_M, s.slim_energy);
  294. if (whole)
  295. energy += compute_energy_from_jacobians(s.Ji_s, s.s_M, s.scaf_energy);
  296. energy += compute_soft_constraint_energy(s);
  297. return energy;
  298. }
  299. void buildAm(const Eigen::VectorXd &sqrt_M,
  300. const Eigen::SparseMatrix<double> &Dx,
  301. const Eigen::SparseMatrix<double> &Dy,
  302. const Eigen::MatrixXd &W,
  303. Eigen::SparseMatrix<double> &Am)
  304. {
  305. std::vector<Eigen::Triplet<double>> IJV;
  306. Eigen::SparseMatrix<double> Dz;
  307. Eigen::SparseMatrix<double> MDx = sqrt_M.asDiagonal() * Dx;
  308. Eigen::SparseMatrix<double> MDy = sqrt_M.asDiagonal() * Dy;
  309. igl::slim_buildA(MDx, MDy, Dz, W, IJV);
  310. Am.setFromTriplets(IJV.begin(), IJV.end());
  311. Am.makeCompressed();
  312. }
  313. void buildRhs(const Eigen::VectorXd &sqrt_M,
  314. const Eigen::MatrixXd &W,
  315. const Eigen::MatrixXd &Ri,
  316. Eigen::VectorXd &f_rhs)
  317. {
  318. const int dim = (W.cols() == 4) ? 2 : 3;
  319. const int f_n = W.rows();
  320. f_rhs.resize(dim * dim * f_n);
  321. for (int i = 0; i < f_n; i++)
  322. {
  323. auto sqrt_area = sqrt_M(i);
  324. f_rhs(i + 0 * f_n) = sqrt_area * (W(i, 0) * Ri(i, 0) + W(i, 1) * Ri(i, 1));
  325. f_rhs(i + 1 * f_n) = sqrt_area * (W(i, 0) * Ri(i, 2) + W(i, 1) * Ri(i, 3));
  326. f_rhs(i + 2 * f_n) = sqrt_area * (W(i, 2) * Ri(i, 0) + W(i, 3) * Ri(i, 1));
  327. f_rhs(i + 3 * f_n) = sqrt_area * (W(i, 2) * Ri(i, 2) + W(i, 3) * Ri(i, 3));
  328. }
  329. }
  330. void get_complement(const Eigen::VectorXi &bnd_ids, int v_n, Eigen::ArrayXi &unknown_ids)
  331. { // get the complement of bnd_ids.
  332. int assign = 0, i = 0;
  333. for (int get = 0; i < v_n && get < bnd_ids.size(); i++)
  334. {
  335. if (bnd_ids(get) == i)
  336. get++;
  337. else
  338. unknown_ids(assign++) = i;
  339. }
  340. while (i < v_n)
  341. unknown_ids(assign++) = i++;
  342. assert(assign + bnd_ids.size() == v_n);
  343. }
  344. void build_surface_linear_system(const SCAFData &s, Eigen::SparseMatrix<double> &L, Eigen::VectorXd &rhs)
  345. {
  346. using namespace Eigen;
  347. using namespace std;
  348. const int v_n = s.v_num - (s.frame_ids.size());
  349. const int dim = s.dim;
  350. const int f_n = s.mf_num;
  351. // to get the complete A
  352. Eigen::VectorXd sqrtM = s.m_M.array().sqrt();
  353. Eigen::SparseMatrix<double> A(dim * dim * f_n, dim * v_n);
  354. auto decoy_Dx_m = s.Dx_m;
  355. decoy_Dx_m.conservativeResize(s.W_m.rows(), v_n);
  356. auto decoy_Dy_m = s.Dy_m;
  357. decoy_Dy_m.conservativeResize(s.W_m.rows(), v_n);
  358. buildAm(sqrtM, decoy_Dx_m, decoy_Dy_m, s.W_m, A);
  359. const VectorXi &bnd_ids = s.fixed_ids;
  360. auto bnd_n = bnd_ids.size();
  361. if (bnd_n == 0)
  362. {
  363. Eigen::SparseMatrix<double> At = A.transpose();
  364. At.makeCompressed();
  365. Eigen::SparseMatrix<double> id_m(At.rows(), At.rows());
  366. id_m.setIdentity();
  367. L = At * A;
  368. Eigen::VectorXd frhs;
  369. buildRhs(sqrtM, s.W_m, s.Ri_m, frhs);
  370. rhs = At * frhs;
  371. }
  372. else
  373. {
  374. MatrixXd bnd_pos;
  375. igl::slice(s.w_uv, bnd_ids, 1, bnd_pos);
  376. ArrayXi known_ids(bnd_ids.size() * dim);
  377. ArrayXi unknown_ids((v_n - bnd_ids.rows()) * dim);
  378. get_complement(bnd_ids, v_n, unknown_ids);
  379. VectorXd known_pos(bnd_ids.size() * dim);
  380. for (int d = 0; d < dim; d++)
  381. {
  382. auto n_b = bnd_ids.rows();
  383. known_ids.segment(d * n_b, n_b) = bnd_ids.array() + d * v_n;
  384. known_pos.segment(d * n_b, n_b) = bnd_pos.col(d);
  385. unknown_ids.block(d * (v_n - n_b), 0, v_n - n_b, unknown_ids.cols()) =
  386. unknown_ids.topRows(v_n - n_b) + d * v_n;
  387. }
  388. Eigen::SparseMatrix<double> Au, Ae;
  389. igl::slice(A, unknown_ids, 2, Au);
  390. igl::slice(A, known_ids, 2, Ae);
  391. Eigen::SparseMatrix<double> Aut = Au.transpose();
  392. Aut.makeCompressed();
  393. L = Aut * Au;
  394. Eigen::VectorXd frhs;
  395. buildRhs(sqrtM, s.W_m, s.Ri_m, frhs);
  396. rhs = Aut * (frhs - Ae * known_pos);
  397. }
  398. // add soft constraints.
  399. for (auto const &x : s.soft_cons)
  400. {
  401. int v_idx = x.first;
  402. for (int d = 0; d < dim; d++)
  403. {
  404. rhs(d * (v_n) + v_idx) += s.soft_const_p * x.second(d); // rhs
  405. L.coeffRef(d * v_n + v_idx,
  406. d * v_n + v_idx) += s.soft_const_p; // diagonal
  407. }
  408. }
  409. }
  410. void build_scaffold_linear_system(const SCAFData &s, Eigen::SparseMatrix<double> &L, Eigen::VectorXd &rhs)
  411. {
  412. using namespace Eigen;
  413. const int f_n = s.W_s.rows();
  414. const int v_n = s.Dx_s.cols();
  415. const int dim = s.dim;
  416. Eigen::VectorXd sqrtM = s.s_M.array().sqrt();
  417. Eigen::SparseMatrix<double> A(dim * dim * f_n, dim * v_n);
  418. buildAm(sqrtM, s.Dx_s, s.Dy_s, s.W_s, A);
  419. VectorXi bnd_ids;
  420. igl::cat(1, s.fixed_ids, s.frame_ids, bnd_ids);
  421. auto bnd_n = bnd_ids.size();
  422. assert(bnd_n > 0);
  423. MatrixXd bnd_pos;
  424. igl::slice(s.w_uv, bnd_ids, 1, bnd_pos);
  425. ArrayXi known_ids(bnd_ids.size() * dim);
  426. ArrayXi unknown_ids((v_n - bnd_ids.rows()) * dim);
  427. get_complement(bnd_ids, v_n, unknown_ids);
  428. VectorXd known_pos(bnd_ids.size() * dim);
  429. for (int d = 0; d < dim; d++)
  430. {
  431. auto n_b = bnd_ids.rows();
  432. known_ids.segment(d * n_b, n_b) = bnd_ids.array() + d * v_n;
  433. known_pos.segment(d * n_b, n_b) = bnd_pos.col(d);
  434. unknown_ids.block(d * (v_n - n_b), 0, v_n - n_b, unknown_ids.cols()) =
  435. unknown_ids.topRows(v_n - n_b) + d * v_n;
  436. }
  437. Eigen::VectorXd sqrt_M = s.s_M.array().sqrt();
  438. // manual slicing for A(:, unknown/known)'
  439. Eigen::SparseMatrix<double> Au, Ae;
  440. igl::slice(A, unknown_ids, 2, Au);
  441. igl::slice(A, known_ids, 2, Ae);
  442. Eigen::SparseMatrix<double> Aut = Au.transpose();
  443. Aut.makeCompressed();
  444. L = Aut * Au;
  445. Eigen::VectorXd frhs;
  446. buildRhs(sqrtM, s.W_s, s.Ri_s, frhs);
  447. rhs = Aut * (frhs - Ae * known_pos);
  448. }
  449. void solve_weighted_arap(SCAFData &s, Eigen::MatrixXd &uv)
  450. {
  451. using namespace Eigen;
  452. using namespace std;
  453. int dim = s.dim;
  454. igl::Timer timer;
  455. timer.start();
  456. VectorXi bnd_ids;
  457. igl::cat(1, s.fixed_ids, s.frame_ids, bnd_ids);
  458. const auto v_n = s.v_num;
  459. const auto bnd_n = bnd_ids.size();
  460. assert(bnd_n > 0);
  461. MatrixXd bnd_pos;
  462. igl::slice(s.w_uv, bnd_ids, 1, bnd_pos);
  463. ArrayXi known_ids(bnd_n * dim);
  464. ArrayXi unknown_ids((v_n - bnd_n) * dim);
  465. get_complement(bnd_ids, v_n, unknown_ids);
  466. VectorXd known_pos(bnd_ids.size() * dim);
  467. for (int d = 0; d < dim; d++)
  468. {
  469. auto n_b = bnd_ids.rows();
  470. known_ids.segment(d * n_b, n_b) = bnd_ids.array() + d * v_n;
  471. known_pos.segment(d * n_b, n_b) = bnd_pos.col(d);
  472. unknown_ids.block(d * (v_n - n_b), 0, v_n - n_b, unknown_ids.cols()) =
  473. unknown_ids.topRows(v_n - n_b) + d * v_n;
  474. }
  475. Eigen::SparseMatrix<double> L;
  476. Eigen::VectorXd rhs;
  477. // fixed frame solving:
  478. // x_e as the fixed frame, x_u for unknowns (mesh + unknown scaffold)
  479. // min ||(A_u*x_u + A_e*x_e) - b||^2
  480. // => A_u'*A_u*x_u = Au'* (b - A_e*x_e) := Au'* b_u
  481. //
  482. // separate matrix build:
  483. // min ||A_m x_m - b_m||^2 + ||A_s x_all - b_s||^2 + soft + proximal
  484. // First change dimension of A_m to fit for x_all
  485. // (Not just at the end, since x_all is flattened along dimensions)
  486. // L = A_m'*A_m + A_s'*A_s + soft + proximal
  487. // rhs = A_m'* b_m + A_s' * b_s + soft + proximal
  488. //
  489. Eigen::SparseMatrix<double> L_m, L_s;
  490. Eigen::VectorXd rhs_m, rhs_s;
  491. build_surface_linear_system(s, L_m, rhs_m); // complete Am, with soft
  492. build_scaffold_linear_system(s, L_s, rhs_s); // complete As, without proximal
  493. L = L_m + L_s;
  494. rhs = rhs_m + rhs_s;
  495. L.makeCompressed();
  496. Eigen::VectorXd unknown_Uc((v_n - s.frame_ids.size() - s.fixed_ids.size()) * dim), Uc(dim * v_n);
  497. SimplicialLDLT<Eigen::SparseMatrix<double>> solver;
  498. unknown_Uc = solver.compute(L).solve(rhs);
  499. igl::slice_into(unknown_Uc, unknown_ids.matrix(), 1, Uc);
  500. igl::slice_into(known_pos, known_ids.matrix(), 1, Uc);
  501. uv = Map<Matrix<double, -1, -1, Eigen::ColMajor>>(Uc.data(), v_n, dim);
  502. }
  503. double perform_iteration(SCAFData &s)
  504. {
  505. Eigen::MatrixXd V_out = s.w_uv;
  506. compute_jacobians(s, V_out, true);
  507. igl::slim_update_weights_and_closest_rotations_with_jacobians(s.Ji_m, s.slim_energy, 0, s.W_m, s.Ri_m);
  508. igl::slim_update_weights_and_closest_rotations_with_jacobians(s.Ji_s, s.scaf_energy, 0, s.W_s, s.Ri_s);
  509. solve_weighted_arap(s, V_out);
  510. auto whole_E = [&s](Eigen::MatrixXd &uv) { return compute_energy(s, uv, true); };
  511. Eigen::MatrixXi w_T;
  512. if (s.m_T.cols() == s.s_T.cols())
  513. igl::cat(1, s.m_T, s.s_T, w_T);
  514. else
  515. w_T = s.s_T;
  516. return igl::flip_avoiding_line_search(w_T, s.w_uv, V_out,
  517. whole_E, -1) /
  518. s.mesh_measure;
  519. }
  520. }
  521. }
  522. IGL_INLINE void igl::scaf_precompute(
  523. const Eigen::MatrixXd &V,
  524. const Eigen::MatrixXi &F,
  525. const Eigen::MatrixXd &V_init,
  526. igl::SCAFData &data,
  527. igl::MappingEnergyType slim_energy,
  528. Eigen::VectorXi &b,
  529. Eigen::MatrixXd &bc,
  530. double soft_p)
  531. {
  532. Eigen::MatrixXd CN;
  533. Eigen::MatrixXi FN;
  534. igl::scaf::add_new_patch(data, V, F, Eigen::RowVector2d(0, 0), V_init);
  535. data.soft_const_p = soft_p;
  536. for (int i = 0; i < b.rows(); i++)
  537. data.soft_cons[b(i)] = bc.row(i);
  538. data.slim_energy = slim_energy;
  539. auto &s = data;
  540. if (!data.has_pre_calc)
  541. {
  542. int v_n = s.mv_num + s.sv_num;
  543. int f_n = s.mf_num + s.sf_num;
  544. int dim = s.dim;
  545. Eigen::MatrixXd F1, F2, F3;
  546. igl::local_basis(s.m_V, s.m_T, F1, F2, F3);
  547. auto face_proj = [](Eigen::MatrixXd& F){
  548. std::vector<Eigen::Triplet<double> >IJV;
  549. int f_num = F.rows();
  550. for(int i=0; i<F.rows(); i++) {
  551. IJV.push_back(Eigen::Triplet<double>(i, i, F(i,0)));
  552. IJV.push_back(Eigen::Triplet<double>(i, i+f_num, F(i,1)));
  553. IJV.push_back(Eigen::Triplet<double>(i, i+2*f_num, F(i,2)));
  554. }
  555. Eigen::SparseMatrix<double> P(f_num, 3*f_num);
  556. P.setFromTriplets(IJV.begin(), IJV.end());
  557. return P;
  558. };
  559. Eigen::SparseMatrix<double> G;
  560. igl::grad(s.m_V, s.m_T, G);
  561. s.Dx_m = face_proj(F1) * G;
  562. s.Dy_m = face_proj(F2) * G;
  563. igl::scaf::compute_scaffold_gradient_matrix(s, s.Dx_s, s.Dy_s);
  564. s.Dx_m.makeCompressed();
  565. s.Dy_m.makeCompressed();
  566. s.Ri_m = Eigen::MatrixXd::Zero(s.Dx_m.rows(), dim * dim);
  567. s.Ji_m.resize(s.Dx_m.rows(), dim * dim);
  568. s.W_m.resize(s.Dx_m.rows(), dim * dim);
  569. s.Dx_s.makeCompressed();
  570. s.Dy_s.makeCompressed();
  571. s.Ri_s = Eigen::MatrixXd::Zero(s.Dx_s.rows(), dim * dim);
  572. s.Ji_s.resize(s.Dx_s.rows(), dim * dim);
  573. s.W_s.resize(s.Dx_s.rows(), dim * dim);
  574. data.has_pre_calc = true;
  575. }
  576. }
  577. IGL_INLINE Eigen::MatrixXd igl::scaf_solve(SCAFData &s, int iter_num)
  578. {
  579. using namespace std;
  580. using namespace Eigen;
  581. s.energy = igl::scaf::compute_energy(s, s.w_uv, false) / s.mesh_measure;
  582. for (int it = 0; it < iter_num; it++)
  583. {
  584. s.total_energy = igl::scaf::compute_energy(s, s.w_uv, true) / s.mesh_measure;
  585. s.rect_frame_V = Eigen::MatrixXd();
  586. igl::scaf::mesh_improve(s);
  587. double new_weight = s.mesh_measure * s.energy / (s.sf_num * 100);
  588. s.scaffold_factor = new_weight;
  589. igl::scaf::update_scaffold(s);
  590. s.total_energy = igl::scaf::perform_iteration(s);
  591. s.energy =
  592. igl::scaf::compute_energy(s, s.w_uv, false) / s.mesh_measure;
  593. }
  594. return s.w_uv.topRows(s.mv_num);
  595. }
  596. #ifdef IGL_STATIC_LIBRARY
  597. #endif