1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- #!/usr/bin/env python
- #
- # This file is part of libigl, a simple c++ geometry processing library.
- #
- # Copyright (C) 2017 Sebastian Koch <s.koch@tu-berlin.de> and Daniele Panozzo <daniele.panozzo@gmail.com>
- #
- # This Source Code Form is subject to the terms of the Mozilla Public License
- # v. 2.0. If a copy of the MPL was not distributed with this file, You can
- # obtain one at http://mozilla.org/MPL/2.0/.
- import sys, os
- # Add the igl library to the modules search path
- import math
- sys.path.insert(0, os.getcwd() + "/../")
- import pyigl as igl
- from shared import TUTORIAL_SHARED_PATH, check_dependencies
- dependencies = []
- check_dependencies(dependencies)
- if __name__ == "__main__":
- V = igl.eigen.MatrixXd()
- F = igl.eigen.MatrixXi()
- # Load meshes in OFF format
- igl.readOBJ(TUTORIAL_SHARED_PATH + "horse_quad.obj", V, F)
- # Count the number of irregular vertices, the border is ignored
- irregular = igl.is_irregular_vertex(V, F)
- vertex_count = V.rows()
- irregular_vertex_count = sum(irregular)
- irregular_ratio = irregular_vertex_count / vertex_count
- print("Irregular vertices: \n%d/%d (%.2f%%)\n" % (
- irregular_vertex_count, vertex_count, irregular_ratio * 100))
- # Compute areas, min, max and standard deviation
- area = igl.eigen.MatrixXd()
- igl.doublearea(V, F, area)
- area /= 2.0
- area_avg = area.mean()
- area_min = area.minCoeff() / area_avg
- area_max = area.maxCoeff() / area_avg
- area_ns = (area - area_avg) / area_avg
- area_sigma = math.sqrt(area_ns.squaredMean())
- print("Areas (Min/Max)/Avg_Area Sigma: \n%.2f/%.2f (%.2f)\n" % (
- area_min, area_max, area_sigma))
- # Compute per face angles, min, max and standard deviation
- angles = igl.eigen.MatrixXd()
- igl.internal_angles(V, F, angles)
- angles = 360.0 * (angles / (2 * math.pi))
- angle_avg = angles.mean()
- angle_min = angles.minCoeff()
- angle_max = angles.maxCoeff()
- angle_ns = angles - angle_avg
- angle_sigma = math.sqrt(angle_ns.squaredMean())
- print("Angles in degrees (Min/Max) Sigma: \n%.2f/%.2f (%.2f)\n" % (
- angle_min, angle_max, angle_sigma))
|