|
@@ -19,12 +19,14 @@ class Detector(object):
|
|
|
config = munchify(configuration)
|
|
|
|
|
|
self.img_proc = Pipeline()
|
|
|
- self.img_proc.rescale(
|
|
|
- min_size=config.preprocess.min_size,
|
|
|
- min_scale=config.preprocess.scale)
|
|
|
-
|
|
|
self.img_proc.find_border()
|
|
|
|
|
|
+ if config.preprocess.min_size:
|
|
|
+ self.img_proc.rescale(
|
|
|
+ min_size=config.preprocess.min_size,
|
|
|
+ min_scale=config.preprocess.scale)
|
|
|
+
|
|
|
+
|
|
|
self.img_proc.preprocess(
|
|
|
equalize=False, sigma=config.preprocess.sigma)
|
|
|
|
|
@@ -32,7 +34,6 @@ class Detector(object):
|
|
|
type=BinarizerType.gauss_local,
|
|
|
use_masked=True,
|
|
|
use_cv2=True,
|
|
|
- sigma=5.0,
|
|
|
window_size=config.threshold.window_size,
|
|
|
offset=2.0,
|
|
|
)
|
|
@@ -44,7 +45,7 @@ class Detector(object):
|
|
|
iterations=config.postprocess.dilate_iterations)
|
|
|
|
|
|
self.bbox_proc = Pipeline()
|
|
|
- self.bbox_proc.detect()
|
|
|
+ self.bbox_proc.detect(use_masked=True)
|
|
|
_, splitter = self.bbox_proc.split_bboxes(
|
|
|
preproc=Pipeline(), detector=Pipeline())
|
|
|
_, bbox_filter = self.bbox_proc.bbox_filter(
|
|
@@ -52,17 +53,17 @@ class Detector(object):
|
|
|
nms_threshold=0.3,
|
|
|
enlarge=0.01,
|
|
|
)
|
|
|
- _, scorer = self.bbox_proc.score()
|
|
|
+ # _, scorer = self.bbox_proc.score()
|
|
|
|
|
|
self.img_proc.requires_input(splitter.set_image)
|
|
|
self.img_proc.requires_input(bbox_filter.set_image)
|
|
|
- self.img_proc.requires_input(scorer.set_image)
|
|
|
+ # self.img_proc.requires_input(scorer.set_image)
|
|
|
|
|
|
|
|
|
|
|
|
def __call__(self, im: np.ndarray) -> T.List[BBox]:
|
|
|
|
|
|
_im = self.img_proc(im)
|
|
|
- bboxes, labels, scores = self.bbox_proc(_im)
|
|
|
+ det_result = self.bbox_proc(_im)
|
|
|
|
|
|
- return bboxes
|
|
|
+ return det_result.bboxes
|