from typing import Any from flask import make_response, request, abort from flask.views import View from pycs.database.Database import Database from pycs.frontend.notifications.NotificationList import NotificationList from pycs.frontend.notifications.NotificationManager import NotificationManager from pycs.interfaces.MediaFile import MediaFile from pycs.interfaces.MediaStorage import MediaStorage from pycs.jobs.JobGroupBusyException import JobGroupBusyException from pycs.jobs.JobRunner import JobRunner from pycs.util.PipelineCache import PipelineCache class PredictModel(View): """ load a model and create predictions """ # pylint: disable=arguments-differ methods = ['POST'] def __init__(self, db: Database, nm: NotificationManager, jobs: JobRunner, pipelines: PipelineCache): # pylint: disable=invalid-name self.db = db self.nm = nm self.jobs = jobs self.pipelines = pipelines def dispatch_request(self, project_id): # extract request data data = request.get_json(force=True) if 'predict' not in data or data['predict'] not in ['all', 'new']: return abort(400) # find project project = self.db.project(project_id) if project is None: return abort(404) # create job try: notifications = NotificationList(self.nm) self.jobs.run(project, 'Model Interaction', f'{project.name} (create predictions)', f'{project.name}/model-interaction', self.load_and_predict, self.db, self.pipelines, notifications, project.identifier, data['predict'], progress=self.progress) except JobGroupBusyException: return abort(400) return make_response() @staticmethod def load_and_predict(database: Database, pipelines: PipelineCache, notifications: NotificationList, project_id: int, file_filter: Any): db = None pipeline = None # create new database instance try: db = database.copy() project = db.project(project_id) model = project.model() storage = MediaStorage(db, project_id, notifications) # create a list of MediaFile if isinstance(file_filter, str): if file_filter == 'new': length = project.count_files_without_results() files = map(lambda f: MediaFile(f, notifications), project.files_without_results()) else: length = project.count_files() files = map(lambda f: MediaFile(f, notifications), project.files()) else: files = map(lambda f: MediaFile(project.file(f.identifier), notifications), file_filter) length = len(file_filter) # load pipeline try: pipeline = pipelines.load_from_root_folder(project, model.root_folder) # iterate over files index = 0 for file in files: # remove old predictions file.remove_predictions() # create new predictions pipeline.execute(storage, file) # commit changes and yield progress db.commit() yield index / length, notifications index += 1 finally: if pipeline is not None: pipelines.free_instance(model.root_folder) finally: if db is not None: db.close() @staticmethod def progress(progress: float, notifications: NotificationList): notifications.fire() return progress