123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 |
- import cv2
- import numpy as np
- import typing as T
- from munch import munchify
- from collections import namedtuple
- from skimage import filters
- # the coordinates are relative!
- BBoxInfo = namedtuple("BBoxInfo", "area ratio mean std selected", defaults=[-1, -1, -1, -1, False])
- Detection = namedtuple("Detection", "bbox info")
- class BBox(namedtuple("BBox", "x0 y0 x1 y1")):
- __slots__ = ()
- @property
- def w(self):
- return abs(self.x1 - self.x0)
- @property
- def h(self):
- return abs(self.y1 - self.y0)
- @property
- def area(self):
- return self.h * self.w
- @property
- def ratio(self):
- return min(self.h, self.w) / max(self.h, self.w)
- def crop(self, im: np.ndarray, enlarge: bool = True):
- x0, y0, x1, y1 = self
- H, W, *_ = im.shape
- # translate from relative coordinates to pixel
- # coordinates for the given image
- x0, x1 = int(x0 * W), int(x1 * W)
- y0, y1 = int(y0 * H), int(y1 * H)
- # enlarge to a square extent
- if enlarge:
- h, w = int(self.h * H), int(self.w * W)
- size = max(h, w)
- dw, dh = (size - w) / 2, (size - h) / 2
- x0, y0 = max(int(x0 - dw), 0), max(int(y0 - dh), 0)
- x1, y1 = int(x0 + size), int(y0 + size)
- if im.ndim == 2:
- return im[y0:y1, x0:x1]
- elif im.ndim == 3:
- return im[y0:y1, x0:x1, :]
- else:
- ValueError(f"Unsupported ndims: {im.ndims=}")
- class Detector(object):
- def __init__(self, configuration: T.Dict[str, T.Dict]) -> None:
- super().__init__()
- config = munchify(configuration)
- self.scale: float = config.preprocess.scale
- self.min_size: int = config.preprocess.min_size
- self.sigma: float = config.preprocess.sigma
- self.block_size_scale: float = config.threshold.block_size_scale
- self.dilate_iterations: int = config.postprocess.dilate_iterations
- self.kernel_size: int = config.postprocess.kernel_size
- def __call__(self, im: np.ndarray) -> T.List[Detection]:
- _im = self.rescale(im)
- im0 = self.preprocess(_im)
- im1 = self.threshold(im0)
- im2 = self.postprocess(im1)
- bboxes = self.detect(im2)
- return self.postprocess_boxes(_im, bboxes)
- def detect(self, im: np.ndarray) -> T.List[BBox]:
- contours, hierarchy = cv2.findContours(im, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
- contours = sorted(contours, key=cv2.contourArea, reverse=True)
- return [_contour2bbox(c, im.shape) for c in contours]
- def rescale(self, im: np.ndarray) -> np.ndarray:
- H, W = im.shape
- _scale = self.min_size / min(H, W)
- scale = max(self.scale, min(1, _scale))
- size = int(W * scale), int(H * scale)
- return cv2.resize(im, dsize=size)
- def preprocess(self, im: np.ndarray) -> np.ndarray:
- res = filters.gaussian(im, sigma=self.sigma, preserve_range=True)
- return res.astype(im.dtype)
- def threshold(self, im: np.ndarray) -> np.ndarray:
- block_size_scale = self.block_size_scale
- # make block size an odd number
- block_size = min(im.shape) * block_size_scale // 2 * 2 + 1
- thresh = filters.threshold_local(im,
- block_size=block_size,
- mode="constant",
- )
- max_value = 255
- bin_im = ((im > thresh) * max_value).astype(np.uint8)
- return max_value - bin_im
- def postprocess(self, im: np.ndarray) -> np.ndarray:
- kernel_size = self.kernel_size
- iterations = self.dilate_iterations
- kernel = np.ones((kernel_size, kernel_size), dtype=np.uint8)
- im = cv2.morphologyEx(im, cv2.MORPH_OPEN, kernel)
- im = cv2.morphologyEx(im, cv2.MORPH_CLOSE, kernel)
- if iterations >= 1:
- im = cv2.erode(im, kernel, iterations=iterations)
- im = cv2.dilate(im, kernel, iterations=iterations)
- return im
- def postprocess_boxes(self, im: np.ndarray, bboxes: T.List[BBox]):
- detections = [Detection(bbox, BBoxInfo()) for bbox in bboxes]
- _im = im.astype(np.float64) / 255.
- integral, integral_sq = cv2.integral2(_im)
- # im_mean, im_std, im_n = _im_mean_std(integral, integral_sq)
- inds = cv2.dnn.NMSBoxes([[x0, y0, x1-x0, y1-y0] for (x0, y0, x1, y1) in bboxes],
- np.ones(len(bboxes), dtype=np.float32),
- score_threshold=0.99,
- nms_threshold=0.1,
- )
- # calculate the BBoxInfos only for the selected and update the detections
- for i in inds.squeeze():
- bbox, _ = detections[i]
- mean, std, n = _im_mean_std(integral, integral_sq, bbox)
- area, ratio = bbox.area, bbox.ratio
- selected = self.is_selected(mean, std, ratio, area)
- info = BBoxInfo(mean, std, area, ratio, selected)
- detections[i] = Detection(bbox, info)
- return detections
- def is_selected(self, mean: float, std: float, ratio: float, area: float) -> bool:
- # Caution, here are some magic numbers!
- return \
- std >= 5e-2 and \
- ratio >= 2.5e-1 and \
- 4e-4 <= area <= 1/9
- def _contour2bbox(contour: np.ndarray, shape: T.Tuple[int, int]) -> BBox:
- """ Gets the maximal extent of a contour and translates it to a bounding box. """
- x0, y0 = contour.min(axis=0)[0].astype(np.int32)
- x1, y1 = contour.max(axis=0)[0].astype(np.int32)
- h, w = shape
- return BBox(x0/w, y0/h, x1/w, y1/h)
- def _im_mean_std(integral: np.ndarray,
- integral_sq: np.ndarray,
- bbox: T.Optional[BBox] = None
- ) -> T.Tuple[float, float, int]:
- h, w = integral.shape[0] - 1, integral.shape[1] - 1
- if bbox is None:
- arr_sum = integral[-1, -1]
- arr_sum_sq = integral_sq[-1, -1]
- N = h * w
- else:
- x0, y0, x1, y1 = bbox
- x0, x1 = int(x0 * w), int(x1 * w)
- y0, y1 = int(y0 * h), int(y1 * h)
- A, B, C, D = (y0,x0), (y1,x0), (y0,x1), (y1,x1)
- arr_sum = integral[D] + integral[A] - integral[B] - integral[C]
- arr_sum_sq = integral_sq[D] + integral_sq[A] - integral_sq[B] - integral_sq[C]
- N = (x1-x0) * (y1-y0)
- arr_mean = arr_sum / N
- arr_std = np.sqrt((arr_sum_sq - (arr_sum**2) / N) / N)
- return arr_mean, arr_std, N
|