function [ features ] = caffe_features_single_image( i_image, f_mean, net, s_layer) % function [ features ] = caffe_features_single_image( i_image, f_mean, net, s_layer) % % BRIEF: % Run a forward pass of a given net on a single image and grep features of a specified layer % Requires Caffe version from 17-07-2015 (hash: 6d92d8fcfe0eea9495ffbc) % % INPUT % i_image -- 2d or 3d matrix % f_mean -- The average image of your dataset. This should be the same that was used during training of the CNN model. % Required to be cropped to the input size of your % network! See caffe_load_network.m % net -- a previously loaded network, see caffe_load_network.m % s_layer -- optional (default: 'relu7'), string, specifies the layer used for feature exatraction % %% parse inputs if (nargin<2) error ( 'no mean passed'); end if (nargin<3) error ( 'no network passed'); end if (nargin<4) s_layer = 'relu7'; end %% old caffe layout % % prepare image for caffe format % batch_data = zeros(i_width,i_width,3,1,'single'); % batch_data(:,:,:,1) = caffe_prepare_image(i_image,f_mean,i_width); % batch_data = repmat(batch_data, [1,1,1, batch_size] ); % % % %% grep output and adjust desired format % features = caffe_('get_features',{batch_data},layer); % features = reshape(features{1},size(features{1},1)*size(features{1},2)*size(features{1},3),size(features{1},4))'; % % features = double(features(1,:)'); %% new caffe layout % scale, permute dimensions, subtract mean data = caffe_prepare_image( i_image, f_mean ); % check that network was prepared to work on single images tmp_netshape = net.blobs('prob').shape; assert ( tmp_netshape(2) == 1, 'network not reshaped for passing only a single image' ); % run a single forward pass [~] = net.forward({data}); % fetch activations from specified layer features = net.blobs( s_layer ).get_data(); % vectorize and concatenate activation maps features = reshape( features, ... size(features,1)*size(features,2)*size(features,3), ... size(features,4)... ); % convert output to double precision features = double(features); end