123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- function [ features ] = caffe_features_multiple_images( s_filelist, f_mean, net, s_layer)
- % function [ features ] = caffe_features_multiple_images( s_filelist, f_mean, net, s_layer)
- %
- % BRIEF:
- % Run a forward pass of a given net on a set of images which are
- % listed in an external file and grep features of a specified layer.
- % Requires Caffe version from 17-07-2015 (hash: 6d92d8fcfe0eea9495ffbc)
- %
- % INPUT
- % s_filelist -- string, filename to an external list which contains
- % image names in each line. Alternatively, the variable is
- % given as cell array where each entry contains a loaded
- % image.
- % f_mean -- The average image of your dataset. This should be the same that was used during training of the CNN model.
- % Required to be cropped to the input size of your
- % network! See caffe_load_network.m
- % net -- a previously loaded network, see caffe_load_network.m
- % s_layer -- optional (default: 'relu7'), string, specifies the layer used for feature exatraction
- %
- %% parse inputs
- if (nargin<2)
- error ( 'no mean passed');
- end
- if (nargin<3)
- error ( 'no network passed');
- end
- if (nargin<4)
- s_layer = 'relu7';
- end
-
- %% prepare list of filenames
- b_filelistmode = ischar( s_filelist );
-
- if (b_filelistmode)
- % load the file list
- fid = fopen( s_filelist );
- s_filelist_to_use = textscan(fid,'%s');
- s_filelist_to_use = s_filelist_to_use{1};
- fclose(fid);
- else
- % use the passed filelist
- s_filelist_to_use = s_filelist;
- end
-
- %% new caffe layout
- net_input_shape = net.blobs('data').shape;
- i_batch_size = net_input_shape(4);
-
- % create tmp for batch
- batch_data = {zeros(net_input_shape(1),... %height
- net_input_shape(2),... %width
- net_input_shape(3),... %width, ...%RGB
- i_batch_size,...
- 'single')};
-
- % Calculate the starting indices of every batch
- slices = 1:i_batch_size:size(s_filelist_to_use,1);
- slices(end+1)=size(s_filelist_to_use,1)+1;
-
- % crop the list of files into batches of adequate size
- % then run over every batch
- for i=1:numel(slices)-1
-
- % debug information for progress
- if ( ( i > 1 ) && ( mod(i,10) == 0 ) )
- fprintf('Running batch number %i of %i\n',i, numel(slices)-1);
- end
-
- % load the images of the next slice
- for j=slices(i):slices(i+1)-1;
- if (b_filelistmode)
- batch_data{1}(:,:,:,j-slices(i)+1) = caffe_prepare_image(imread( s_filelist_to_use{j} ), f_mean );
- else
- batch_data{1}(:,:,:,j-slices(i)+1) = caffe_prepare_image(s_filelist_to_use{j}, f_mean );
- end
- end
-
- % run a single forward pass
- [~] = net.forward( batch_data );
-
- % fetch activations from specified layer
- tmp_feat = net.blobs( s_layer ).get_data();
-
- % vectorize and concatenate activation maps
- if ( ndims( tmp_feat ) > 2 )
- tmp_feat = reshape( tmp_feat, ...
- size(tmp_feat,1)*size(tmp_feat,2)*size(tmp_feat,3), ...
- size(tmp_feat,4)...
- );
- end
-
- % allocate enough space in first run
- if ( ~exist('features','var') )
- features = zeros( size(tmp_feat,1), size(s_filelist_to_use,1), 'single');
- end
-
- % store computed feature accordingly
- features( :, slices(i):(slices(i+1)-1) ) = tmp_feat( :, 1:(slices(i+1)-slices(i)) );
- end
-
- % convert output to double precision
- features = double(features);
- end
|