Nessuna descrizione

Alexander Freytag 962eb0a405 clean-up, code adaptation towards matlab-suitable data sizes, code commentations, stable version 11 anni fa
COPYING 9a56179e76 added felzenszwalb code 12 anni fa
Makefile 9a56179e76 added felzenszwalb code 12 anni fa
README d95f9f0906 added important note to readme regarding max size of supported images 11 anni fa
compileFelzenszwalbSegmentation.m 1de245ec3d added compilation program 11 anni fa
convolve.h 9a56179e76 added felzenszwalb code 12 anni fa
disjoint-set.h 9a56179e76 added felzenszwalb code 12 anni fa
filter.h 9a56179e76 added felzenszwalb code 12 anni fa
image.h 9a56179e76 added felzenszwalb code 12 anni fa
imconv.h 9a56179e76 added felzenszwalb code 12 anni fa
imutil.h 9a56179e76 added felzenszwalb code 12 anni fa
misc.h 9a56179e76 added felzenszwalb code 12 anni fa
pnmfile.h 9a56179e76 added felzenszwalb code 12 anni fa
segment-graph.h 962eb0a405 clean-up, code adaptation towards matlab-suitable data sizes, code commentations, stable version 11 anni fa
segment-image-labelOutput.h 962eb0a405 clean-up, code adaptation towards matlab-suitable data sizes, code commentations, stable version 11 anni fa
segment-image.h 962eb0a405 clean-up, code adaptation towards matlab-suitable data sizes, code commentations, stable version 11 anni fa
segment.cpp 9a56179e76 added felzenszwalb code 12 anni fa
segmentFelzenszwalb.cpp 962eb0a405 clean-up, code adaptation towards matlab-suitable data sizes, code commentations, stable version 11 anni fa
segmentFelzenszwalb.m 810368e721 minor change on default value 12 anni fa

README


Implementation of the segmentation algorithm described in:

Efficient Graph-Based Image Segmentation
Pedro F. Felzenszwalb and Daniel P. Huttenlocher
International Journal of Computer Vision, 59(2) September 2004.

The program takes a color image (PPM format) and produces a segmentation
with a random color assigned to each region.

1) Type "make" to compile "segment".

2) Run "segment sigma k min input output".

The parameters are: (see the paper for details)

sigma: Used to smooth the input image before segmenting it.
k: Value for the threshold function.
min: Minimum component size enforced by post-processing.
input: Input image.
output: Output image.

Typical parameters are sigma = 0.5, k = 500, min = 20.
Larger values for k result in larger components in the result.


NOTE ( by Alexander Freytag )
- only images with less then std::numeric_limits::max() pixels are supported properly!